
Human-computer inter facing

113

Notes:

113

Hear the word “computer” and you probably think of a box with a monitor

attached, like a desktop PC. But these days, almost every electronic device, from

your TV or your parents’ satnav, right up to the auto-pilot in a jumbo jet, is

controlled by a computer. Computers are everywhere.

In order to do the job they’re programmed for, computers need to receive

information from the real world telling them what to do; these are called “inputs”.

An input could be a user typing a command or clicking on something with the

mouse, or it could be readings from the sensors on an aeroplane wing, telling the

auto-pilot the wind speed, air pressure and compass location of the plane. It all

depends on the type of computer and the type of program.

 Fun with ports

Inputs and outputs could also come in the form of a data connection, such as a

network link to the internet. Think of the internet, and you probably think of web

pages. In fact, the World Wide Web is only one of the many internet applications.

There are lots of other ways to use the internet, such as email, instant messaging,

text-based newsgroups or logging on to another computer using the Secure Shell

(SSH) network protocol. Each of these different ways of using the internet has a

port number associated with it.

By “port”, I don’t mean an actual physical connection on your computer, such as

a USB or FireWire port. In this context, a port is a software connection. A port can

either be open or closed. If it’s open, then that simply means that the program will

accept connections over it. If the port is closed, then the program won’t accept

connections and the service in question won’t accept any inputs over the network.

For instance, the HTTP protocol used by the World Wide Web accepts inputs

using the TCP port 80. If port 80 is open, a web server will respond to a request

from a client, such as your web browser, by displaying the requested web page.

If one of that server’s administrators has closed port 80, then you won’t be able to

access the website and your browser will display an error message.

Human-computer interfacing
Chapter 4

 To function,
computers need

inputs – information
from an external

source. They process
this information and

produce a result,
called an “output”.

Human-computer inter facing

114

Notes:Other common ports include TCP port 25, which is used for the SMTP email

protocol; ports 20 and 21, which are used for the file transfer protocol (FTP); and

port 161, for the SNMP network management protocol. There are thousands of

different ports available to use and hence thousands of different ways to

communicate on the internet!

In this chapter, we are going to use your Raspberry Pi to interface with a range of

internet applications, including Twitter and email. We’ll communicate with each

program via the appropriate port, providing input that causes that program to run

a specific function. And we’re going to do it all using the Python programming

language. You won’t touch a browser once.

All the examples in this section are designed to be as simple as possible. Each

exercise demonstrates just one type of communication. Think of these examples

as ingredients in a recipe that, when mixed together, produce something much

better than the individual parts. The extent of what you make is only limited by

your imagination! You have your Raspberry Pi – now get cooking!

 What tools will I need?

To complete the exercises in this chapter you will need the “IDLE” program that

you used in the last chapter. Some of the exercises also require you to install extra

Python modules. I’ll tell you when this is the case. Wherever possible, I have made

these extras available on the SD card that came with your Raspberry Pi, so look

out for the SD card logo!

These resources are also available on Google Drive, here: http://goo.gl/vK3VP

Human-computer inter facing

115

Notes: Lesson 4.1: Twitter

To complete this exercise you will need to install the Python Twitter Tools. You can

either download these from http://pypi.python.org/pypi/twitter/ or install them

from the SD card that came with your Raspberry Pi.

The following Python script will tweet the message “Hello, World!” from your

Raspberry Pi. It then displays a list of all your personal tweets. No web browser

in sight! This example shows how simple this type of application can be,

using Python.

 import os
 from twitter import *

 # go to https://dev.twitter.com/apps/new to create your own
 # CONSUMER_KEY and CONSUMER_SECRET
 # Note that you need to set the access level to read and write
 # for this script to work (Found in the settings tab once you
 # have created a new application)
 CONSUMER_KEY = '9HvofZMpvHo0KGZyg9ckg'
 CONSUMER_SECRET = 'S75MwXN2H0h2qIYszc51WtHTbpbouhDkr6CCTBPzA'
	#	get	full	pathname	of	.twitterdemo_oauth	file	in	the	
 # home directory of the current user
	oauth_filename	=	os.path.join(os.path.expanduser('~'),
 '.twitterdemo_oauth')

 # get twitter account login info
 if not	os.path.exists(oauth_filename):
 oauth_dance('Raspberry Pi Twitter Demo', CONSUMER_KEY,
	CONSUMER_SECRET,	oauth_filename)
	(oauth_token,	oauth_token_secret)	=	read_token_file(oauth_filename)

 # log in to Twitter
 auth = OAuth(oauth_token, oauth_token_secret, CONSUMER_KEY,
 CONSUMER_SECRET)
 twitter = Twitter(auth=auth)

 # Tweet a new status update
 twitter.statuses.update(status="Hello, World!")

 # Display all my tweets
 for tweet in twitter.statuses.user_timeline():
 print('Created at',tweet['created_at'])
 print(tweet['text'])
 print('-'*80)

 Over to you

Try to think of other ways in which you could use this mechanism. For instance,

take an input from somewhere, process it and tweet the result. You could detect

the weather outside and tweet the result. You could even make a tweet from your

mobile phone and have your Raspberry Pi read and react to it (by playing some

music, for example)!

 Tip...

As in the previous

chapter, we

sometimes have

more code to

write than fits on

one line. When

you see a line of

code that goes

onto a new line,

don’t press

Return to start a

new line, just let

it word wrap and

Python will work

it out for you.

Human-computer inter facing

116

Notes: Lesson 4.2: Email application

Email is transferred across the internet using something called SMTP – Simple

Mail Transfer Protocol. SMTP uses port 25. Don’t worry; you don’t need to

understand how SMTP works to be able to send an email. There is a Python

module that does all the hard work for you.

Use the Python script below to send a single email.

 email-example.py:

 import smtplib
 from	email.mime.text	import	MIMEText

 # create the email
 message = """This is a test of using Python on Raspberry Pi
 to send an email. Have fun!"""
	msg	=	MIMEText(message)
 msg['Subject'] = 'RPi Python test'
 msg['From'] = 'My	RPi	<my_rpi@example.com>'
 msg['To'] = 'you@yourdomain.com'

 # send the email
 s = smtplib.SMTP('smtpserver')
 s.login('username', 'password')
 s.sendmail(msg['From'], msg['To'], msg.as_string())
 s.quit()

You can modify the program to send email attachments as well as simple text.

The example on the next page sends an image (such as a JPG file) as an

attachment to the message.

Human-computer inter facing

117

Notes: email-attachment.py:

 import smtplib
 from email.mime.multipart import MIMEMultipart
 from	email.mime.text	import	MIMEText
 from email.mime.image import MIMEImage

 # create multipart email
 msg = MIMEMultipart()
 msg['Subject'] = 'Lily'
 msg['From'] = 'My	RPi	<my_rpi@example.com>'
 msg['To'] = 'you@yourdomain.com'
 msg.preamble = 'This is a multi-part message in MIME format.'

	#	attach	email	text
 message = """This is a test of using Python on Raspberry Pi
 to send an email. This email also includes a picture as an
 email attachment. Have fun!"""
	msg.attach(MIMEText(message))

	#	attach	a	JPG	file
	filename	=	'picture.jpg'
 with open(filename,	'rb') as f:
 img = MIMEImage(f.read())
 img.add_header('Content-Disposition', 'attachment',	filename=filename)
 msg.attach(img)

 # send email
 s = smtplib.SMTP('smtpserver')
 s.login('username', 'password')
 s.send_message(msg)
 s.quit()

 Over to you

Again, try and think of other ways you could use this script. For instance, you

could generate the content of the email (the output) based on an input. For

example, checking the room temperature and emailing a warning if it is getting too

hot. This is regularly used in server rooms, for instance, to detect when the air

conditioning has failed.

NOte: You will have to change the text highlighted in yellow to your own email

address and email server details for this program to work.

There is more information about the email modules in Python available at

http://docs.python.org/py3k/library/email.html

Human-computer inter facing

118

Notes: Lesson 4.3: Remote Procedure Call

A Remote Procedure Call (RPC) is bit of code in one program that causes

another program to do something, for instance run a subroutine (a bit of a program

that performs a specific task). The two programs don’t necessarily have to be on

the same computer, although often they are.

When using RPC, calling a subroutine looks the same in your code as if it was

being executed as part of your program. The communication between programs

remains largely hidden and the programmer does not have to worry about the

details of how it is done.

The language the programs are written in and type of computers do not have to

be the same either – they can be on completely different hardware, operating

systems and programming languages. For example, a mobile phone app could be

programmed to call a Python program running on a Raspberry Pi to perform a

task and return a result.

The type of Remote Procedure Call we are using for this example is called

XMLRPC. Extensible Markup Language (XML) is a markup language that defines

a set of rules for encoding data in a format that is both human-readable and

machine-readable.

There are two programs here – a “server” and a “client”. The server sits waiting

for one or more clients to ask it to do something.

 rpc_server.py:

 from	xmlrpc.server	import SimpleXMLRPCServer

 def hello(name='World'):
 """Return a string saying hello to the name given"""
 return 'Hello, %s!' % name

 def add(x,	y):
 """Add two variables together and return the result"""
 return	x	+	y

 # set up the server
 server = SimpleXMLRPCServer(("localhost", 8000))

 # register our functions
 server.register_function(hello)
 server.register_function(add)

 # Run the server's main loop
 server.serve_forever()

Human-computer inter facing

119

Notes: rpc_client.py:

 import	xmlrpc.client

	s	=	xmlrpc.client.ServerProxy('http://localhost:8000')

 # call the 'hello' function with no parameters
 print(s.hello())

 # call the 'hello' function with a name
 print(s.hello('XMLRPC'))

 # add two numbers together
 print('2+3=%s'	%	s.add(2,3))

To run this example, you need two separate IDLE windows – one for the server

and one for the client. You need to run the server first so that it is waiting for

requests from the client. To stop the server, press Ctrl-C.

How does it work? The server program sits and waits for requests from clients.

The client program, when run, calls the “hello” and “add” subroutines. The calls

are passed from the client to the server program, where the functions are actually

run. The result is then returned to the client program, which displays the result

on screen.

Where could this XMLRPC mechanism be used? Well, imagine that you have

several Raspberry Pis, each one connected to a screen located in a different

room. You also have a central computer running a control application with a

Graphical User Interface (GUI) designed to talk to every room over the network.

This central application could monitor and control every room by communicating

with individual Raspberry Pis – telling them what to display on the screen, control

devices via GPIO, and return data recorded from the room (such as light levels or

temperature). You could even take pictures with a camera! Each Raspberry Pi

would run as an XMLRPC server; the central control program would act as

the client.

 Over to you

You can read more about Python’s XMLRPC modules here:

http://docs.python.org/py3k/library/xmlrpc.server.html

http://docs.python.org/py3k/library/xmlrpc.client.html

There are, however, XMLRPC libraries available in lots of other programming

languages.

Human-computer inter facing

120

Notes: Lesson 4.4: Web applications

A web application is a program that communicates on the World Wide Web.

Like any other program, it has inputs, processes them and produces some output.

Not every input and output from a web application has to be through a web

browser, though!

The World Wide Web uses something called HTTP (Hyper Text Transfer Protocol).

This is what web servers and web browsers use to communicate with each other

at a low level. The port number used for HTTP is 80. The detail of how HTTP works

does not need to concern us at this stage – all the work is done for us by web

browsers and libraries in Python.

A URL (Uniform Resource Locator), otherwise known as a web address, is what

you would type into the address bar of a web browser. It can be made up of a

few parts:

protocol :// hostname : port / address

Let’s look at those parts in order:

Protocol

For a website, this is normally “HTTP:” but doesn’t have to be. Secure websites

use the encrypted “HTTPS:” protocol, and most browsers can also work with the

file transfer protocol (“FTP:”).

Hostname

This is the name of the computer, the web server, on which the website resides.

In these examples, we use the hostname “localhost”, which means the computer

on which a program resides.

Port

This is a number between 1 and 65,535, specifying the TCP port to be used for the

communication. If not specified, the default port, 80, is used.

Address

This is the address of the specific webpage that you want to view. For instance,

in the URL www.raspberrypi.org/faqs the suffix “faqs” is the address.

HTML (Hypertext Markup Language) is a language used to describe the layout of

a web page. In both of these examples here, you will notice that the web page

created is fairly basic. Imagine how you can improve this just by modifying

the HTML!

 Tip...

If you want to

find out the

IP address of

your Raspberry Pi,

open the Terminal,

type the command

“ifconfig” and

press Return.

This command

does the same

job as “ipconfig”

on a MS Windows

computer.

Human-computer inter facing

121

Notes: Inputs

The main input to a web application is in the form of a “page request” from a web

browser. As part of this request, variables are passed from the web browser to the

web server (in this case, your program). These variables might include things such

as the specific page you want to see, login details, details about how you would

like the site to look and so on.

Normally, these variables exist only for the lifetime of one request. Once you close

your browser, they’re gone, and if you visit the site again, you’ll have to specify the

details of your request to the server all over again. If you want variables that

persist between requests, you can use a special type of variable called a “cookie”.

Cookies are stored by the web browser and remembered between requests.

Your application’s inputs can be more than just page requests from a web browser

though – a database is often used to store data, for example. You could even use

the temperature of the room from a thermometer connected to your Raspberry Pi!

 Outputs

Outputs from a web application are called a “response”. The output is normally

in the form of the HTML of a web page, although it could be any data type, such

as a JPG file (a picture). The content of this output is generated by the web

application. You could even make your application produce a completely different

type of output as well as a web page – for example, changing the message on a

large electronic sign connected to your Raspberry Pi.

 Processing

On the following pages are two simple Python programs that run as web servers.

This code will also run without modification on a commercial web server running

Apache web server software and the mod_wsgi Python module.

To complete this exercise, you will need to download and install the “WebOb 1.2”

Python module. You’ll find this either on the Raspberry Pi SD card or at the web

address http://pypi.python.org/pypi/WebOb/

Human-computer inter facing

122

Notes: hello-web.py:

 from webob import Request, Response

 class WebApp(object):
 def __call__(self, environ, start_response):
 # capture the request (input)
 req = Request(environ)

 # get the name variable,
 # default value of 'World' if it is not set
 name = req.params.get('name', 'World')

 # generate the HTML for the response (output)
 html = """
	<p>Hello	%s!</p>
	<form	method="post">
	Enter	your	name:	<input	type="text"	name="name">
	<input	type="submit"	value="Submit	Form">
	</form>
 """

 # create and return the response
 resp = Response(html % name)
 return resp(environ, start_response)

 application = WebApp()

 # main program - the web server
 if __name__ == '__main__':
 from wsgiref.simple_server import make_server
 port = 8080

 httpd = make_server('', port, application)
 print('Serving HTTP on port %s...'%port)
 httpd.serve_forever()

Run this application in IDLE, then launch a web browser. Go to the URL

“http://localhost:8080”. If you’re working from another computer available on the

same network, change “localhost” to the IP address of your Raspberry Pi.

Remember, you can find your IP address by typing “ifconfig” into the Terminal.

You can stop the server by pressing Ctrl-C.

Note that most web pages are normally served on port 80. In order to run on

a port below 1024, your program must be run with “superuser” (root) privileges.

We have used port 8080 with this program – this is commonly used by web

applications that are run as a normal user.

How does it work? The “name” variable is passed through to your program in the

form of a “POST” request. This is generated using a form in HTML. The first time

your page is viewed, the “name” variable is not set, so a default value of “World”

is used.

Human-computer inter facing

123

Notes: Cookies

We have just seen an example using a simple form. You may have noticed a

drawback – the “name” variable from that form only lasts for the lifetime of one

request, then it is lost. If we want a variable to remain between requests, we have

to use another type of variable called a “cookie”. The program below is a modified

version of the program above that demonstrates how to use cookies.

 cookies.py:

 from webob import Request, Response

 class WebApp(object):
 def __call__(self, environ, start_response):
 # capture the request (input)
 req = Request(environ)

 # get the cookiechange variable,
 # default value is an empty string
 cookiechange = req.params.get('cookiechange', '')

 if len(cookiechange.strip())	>	0:
													#	change	the	value	of	cookie	if	cookiechange	box	
 # has been completed
 cookie = cookiechange
 else:
 # get the cookie, default value is an empty string
 cookie = req.cookies.get('cookie', '')

 # generate the HTML for the response (output)
 html = """
	<p>The	cookie	is	set	to	'%s'</p>
	<form	method="post">
	Change	cookie	value:	<input	type="text"	name="cookiechange">
	<input	type="submit">
	</form>
 """

 # create the response variable
 resp = Response(html % cookie)

 # store the cookie as part of the response,
									#	max	age	30	days	(=60*60*24*30	seconds)
 resp.set_cookie('cookie',	cookie,	max_age=60*60*24*30)

 return resp(environ, start_response)

 application = WebApp()

 # main program - the web server
 if __name__ == '__main__':
 from wsgiref.simple_server import make_server
 port = 8080

 httpd = make_server('', port, application)
 print('Serving HTTP on port %s...'%port)
 httpd.serve_forever()

Human-computer inter facing

124

Notes:When using this program, you will notice that the value of the cookie is remembered

even if you close the web browser.

How does it work? First, we display the current value of the cookie. If the

“cookiechange” variable is set, the value of the cookie is changed and this is sent

back to the web browser to store. The cookie has a maximum age though – we

have used 30 days in this example. The cookie may be lost even sooner if it

is deleted by the user in the web browser. The web browser may even be set up

to ignore cookies completely and never store them, although this is not usually

the case.

 Further reading

More information about the “WebOb” library can be found at

http://docs.webob.org/en/latest/

There are also several Python web frameworks available that do a lot of the work

for you. A framework is recommended if you are thinking about writing an entire

website. A popular example is the Django framework; see

http://www.djangoproject.com/

We have only given a very small taster of what is possible here – there is a huge

amount that can be learned about writing web applications.

Human-computer inter facing

125

Notes: Lesson 4.5: General Purpose Input/Output (GPIO)

GPIO is short for “General Purpose Input/Output”. Your keyboard, mouse and

monitor are examples of input and output devices on a computer, but they are for

specialised and well-defined tasks. The “General” part of GPIO indicates that you

can design your own device and connect it up to the Raspberry Pi.

This section explains the technicalities of how inputs and outputs are connected

and processed by computers. Following that, there is a technical reference of the

GPIO capabilities of a Raspberry Pi. I’ll finish off with some simple electronic

circuits and software that you can build and use on your Raspberry Pi. In this

guide, we are going to be concentrating on the digital GPIO interface, which is the

simplest to use and understand as a beginner.

So, let’s begin by looking at how computers receive and use information.

 Sensors and output devices

Inputs are pieces of information sent into a computer, much like a human can feel,

smell, taste, hear and see things. Outputs are the pieces of information that are

produced and sent out by a computer, much as you can speak or gesture. As

computers are electrical, inputs and outputs must be converted to and from an

electrical form so that the computer can work with them. A sensor is a piece of

electrical hardware that detects and converts something in the real world (such as

the speed of a wheel) into an electrical signal. An output device is something that

converts an electrical signal to another form (such as a light, a buzzer or a motor).

 Digital and analogue input/ouput

A digital signal is one that can exist in one of only two states, such as a light switch

that is either on or off. While one digital channel (digit) can be either on (“1”) or off

(“0”), we can combine several digits to make a number. This is the binary system

covered in the Python chapter – each binary digit represents one digital channel.

With two digital bits we can create:

To produce useful
results, computers need

data to work with.
Data comes from inputs,

and inputs arrive via
sensors, of one
kind or another.

Binary Decimal

0 0

1 1

10 2

11 3

Human-computer inter facing

126

Notes:This gives us 4 (22) combinations that we can use. The first “2” is the number of

states in a digital channel – on and off. The second “2” is the number of digital

channels we are using.

An analogue signal is one that can have a range of values, whereas a digital signal

only has two. One way to think about digital versus analogue is comparing a flight

of stairs with a ramp. When climbing the stairs you can be quite certain that you

are on the seventh step, for example. You have no option to stand halfway between

the sixth and seventh stair. This is much like a digital signal. In contrast, when

climbing the ramp, you can reach any height above the ground, but with less

certainty about what that height actually is. This is similar to an analogue signal.

Just remember that a digital signal comes in steps (possibly very small steps, but

still steps), while an analogue signal is smooth, allowing any value, but harder to

gauge precisely.

A computer can only understand data in a digital form, so all analogue inputs have

to be converted into a digital format before they can be used by the computer.

Likewise, analogue outputs have to be created by converting the digital values

coming out from a computer. On the Raspberry Pi, this conversion has to be done

using external electronics.

Digital-to-analogue converters (DACs) and analogue-to-digital converters (ADCs)

are widely used in the electronics that connect to computers. The more digital bits

that the converter handles, the more resolution (more accurate) the conversion

will be. For example, if a temperature sensor produces a linear analogue signal

in the range 0 °C to 100 °C and you wanted to be able to measure to at least

the nearest degree on your computer, you would need at least seven digital bits

(27 = 128).

Analogue-to-digital
converters (ADCs) and

digital-to-analogue
converters (DACs) are a key

part in most computer
input/output systems.

Human-computer inter facing

127

Notes: Serial and parallel data

Digital data flows in and out of a computer in one of two ways – in serial or in

parallel. On a parallel interface, there is one data channel for each bit of data that

is input. Think of it as having lots of lanes on a motorway. On a serial interface,

there is just one data channel for each direction (Transmit and Receive), which

every single data bit travels along, one after the other. Think of it like a single road.

Parallel interfaces are simpler to design and use, but require more hardware and

data cable to construct (much like the motorway taking up more space than

the road).

 Interrupts, polling and multitasking

Now we know the basics of how information (data) flows in and out of a computer,

we have to know how to handle the data that is coming in when it arrives. Consider

this situation: You are working on your computer but, at the same time, you

are also expecting one or more phone calls. Think of the phone call as a source

of input data. There are three ways to be able to deal with both tasks at the

same time:

1. Work on the computer until you are interrupted by the phone ringing. Answer

the phone then continue working on your computer.

2. Work on the computer for a minute. Pick up the phone and check to see if there

is someone on the other end. Put the phone down then do another minute of

work on the computer. Check the phone again. Repeat this all day!

3. Work on the computer yourself and get another person to take phone calls

for you.

The first method is an example of using “interrupts”. When on the phone, you

could write down a note for yourself so that you can prioritise any work that occurs

as a result of the phone call in a timely manner. Using interrupts is the most

efficient use of time with infrequent events. There is, however, a disadvantage to

using interrupts: it requires low-level hardware or software (ringtone on the phone)

to be available.

In serial data signals,
there are two

information streams:
transmit (Tx) and

receive (Rx).

In a parallel signal,
many bits of data

can be sent or received
simultaneously.

S
er

ia
l

P
ar

al
le

l

Human-computer inter facing

128

Notes:The second method is an example of “polling”. It tends to waste a lot of your time

by frequently checking the phone when there is nobody there. It also takes time to

swap from one task to the other. This is what you would have to do if the phone

had no ringtone. Polling is the method that is used when events occur frequently

and must be handled in a timely manner.

The third method is an example of “multitasking”. The first person can

concentrate on their work on the computer. The second person could be checking

(polling) the phone all the time and pass messages to you as and when needed.

The problem is that there is not always a second person around. Don’t worry –

operating systems such as Linux on the Raspberry Pi do make it possible for you

to do multitasking, even though there is only one processor.

 embedded applications

An embedded application is where a computer is built into another device. For

example, a Freeview box for a TV or a satnav in a car. If you compare a desktop

PC with a Raspberry Pi, you can see that a desktop PC is not suitable as a

component to build into small devices, unlike a Raspberry Pi. A standard PC does

not normally have any GPIO interfaces fitted either! A Raspberry Pi is much more

versatile in this regard than a desktop PC.

 Real-time applications

A lot of real-world control applications are said to function in “real time”. For real-

time applications, it is often necessary to be able to read inputs, process them

and produce outputs thousands of times a second. The rate of this processing

has to be predictable – one calculation in a fixed timeframe. For example, a CD

has a sample rate of 44.1 kHz – that means that for each data sample point, you

only have 1/44100 seconds (22.6 µS) to do all the processing! In a multitasking

operating system, such as Linux on the Raspberry Pi, you cannot guarantee that

your program will have full control of the CPU during those few microseconds

– the operating system may be busy, communicating on the network port,

for example.

When there is an irregular sample rate on input data, this is called “jitter”. The

predictable timing accuracy that is required needs either dedicated hardware or

special real-time operating systems and low-level programming languages, such

as C or Assembler. The operating systems currently available on the Raspberry Pi

are not really suitable for real-time applications. Fortunately, the Raspberry Pi

does include a C compiler (called GCC) if you want to learn how to write a lower-

level program.

Human-computer inter facing

129

Notes:Don’t worry, though, if you had your heart set on creating some real-time

applications. There is another small electronics prototyping platform, called an

Arduino, which contains a programmable microcontroller suitable for real-time

applications. It is quite easy to use a Raspberry Pi and an Arduino board together.

An Arduino can be used for the high-speed, real-time parts of the design and

a Raspberry Pi can run a higher-level GUI or web application that controls

the Arduino.

Although the Raspberry Pi can run fast I/O applications and the Arduino can use

web applications, this is not what they are best suited for. Remember: always use

the right tools for the job! There is an example of communicating between an

Arduino and a Raspberry Pi later in this guide.

For more information about Arduino boards, see http://www.aurduino.cc

 GPIO hardware interfaces on the Raspberry Pi

There are several types of interface pins on the Raspberry Pi. They can be

configured and used for lots of applications. Note that because the pins on the

Raspberry Pi board are connected straight into the system on a chip (SOC), it is

quite easy to damage your Raspberry Pi or SD card if you are not careful. Make

sure you only use 3.3V on the pins, not 5V. For this reason, it is recommended

that you use an interface board, such as the Gertboard, between the Raspberry

Pi and any circuits you build.

The maximum permitted current draw from the 3.3V pin is 50mA. The maximum

current draw on the 5V pin depends on your power supply – you must leave

enough for the Raspberry Pi to run! Pins not listed in the table above are described

by type in the sections below. Note that some pins can be configured for more

than one type of interface.

DNC = Do Not Connect.
These pins are reserved

for future use.

Human-computer inter facing

130

Notes: GPIO board pins

There are 17 pins available to operate in GPIO mode, configurable as either inputs

or outputs. They carry just one bit of digital data.

High = 3.3V

Low = 0V

Board pin BCM GPIO number

3* 0

5* 1

7 4

8 14

10 15

11 17

12 18

13 21

15 22

Board pin BCM GPIO number

16 23

18 24

19 10

21 9

22 25

23 11

24 8

26 7

* Note that these pins have a 1.8k pull-up resistor on the Raspberry Pi board.

Inter-Integrated Circuit (I²C)

I²C is an interface on which you can connect multiple I²C slave devices.

The Raspberry Pi acts as the master on the bus.

Serial Peripheral Interface (SPI)

SPI is an interface on which you can connect multiple SPI slave devices.

The Raspberry Pi can only act as the master on the bus.

There are five pins available to connect devices to the Raspberry Pi using SPI:

Universal Asynchronous Receiver/transmitter (UARt)

The UART is a serial bus connection. Note that these pins run at 3.3V and the

RS232 specification is for 12V. If you connect this to a RS232 serial device, you

could potentially damage your Raspberry Pi. Please be careful!

Board pin BCM GPIO number Function Description

3* 0 SDA Data

5* 1 SCL Clock

Board pin BCM GPIO number Function Description

19 10 MOSI Master Out, Slave In

21 9 MISO Master In, Slave Out

23 11 SCLK Serial Clock

24 8 CE0 Channel Enable 0. Also known as Slave Select (SS)

26 7 CE1 Channel Enable 1. Also known as Slave Select (SS)

Board pin BCM GPIO number Function Description

8 14 TX Transmit

10 15 RX Receive

 Tip...

Please be careful

with the UART

connection!

If you use too
much current
then you could
easily break
something!

Human-computer inter facing

131

Notes: LeD circuit

Now we know all about data and the Raspberry Pi’s input/output options, let’s get

on with building something!

This is about the simplest circuit you can build to test the GPIO outputs of

a Raspberry Pi. This circuit contains just two components: a 1k resistor and an

LED (Light Emitting Diode). The resistor is used to limit the current that flows

out of the Raspberry Pi and into the LED. If there is too much current, you could

break something!

Note that you need to connect the LED up the correct way round. The flat side of

the LED denotes the negative side; the longer leg denotes the positive side of the

LED. The Gertboard already has LEDs wired up exactly like this on some channels.

The following Python program will let you switch the LED on and off. To complete

this exercise you will need the Raspberry Pi GPIO modules. You can either install

these from the Raspberry Pi SD card or download them from

http://pypi.python.org/pypi/RPi.GPIO/

 import RPi.GPIO as GPIO

 # set up pin 11 to output
 GPIO.setup(11, GPIO.OUT)

 state = False
 while 1:
 GPIO.output(11, state)
 command = input("Press return to switch the LED on/off or
 'Q' to quit: ")
 if command.strip().upper().startswith('Q'):
 break
 state = not state

Note that this Python script must be run with superuser privileges (as root). You

can do this by running your program from the command line and putting “sudo” in

front of the command you are typing. For example: “sudo python led.py”.

LED circuit experiment
wiring diagram. Tip...

Please be careful:

If you use too
much current
then you could
easily break
something!

Human-computer inter facing

132

Notes: Push-button circuit

This is the about the simplest circuit you can use to test GPIO inputs with your

Raspberry Pi. The 10k resistor is what is known as a “pull-up” resistor – that

means that the input will be pulled high (to 3.3V) when the button is not pressed.

When you press the button, it connects the input to 0V via the 1k resistor, sending

the input low. The 1k resistor is present to protect your Raspberry Pi in case you

accidentally set it up as an output instead of an input. The Gertboard has some

channels wired up like this circuit.

On the next page is an example of some Python code that monitors a push button.

We use the tasking features of Python to create a class that monitors a push

button to demonstrate how we might use multitasking. This is so that we do not

miss the button press while the program is busy doing other things. You will

probably notice that this is similar to checking for events when using PyGame.

When using the Python RPi.GPIO module, LOW = False and HIGH = True. As in the

previous example, this program must be run as root by putting “sudo” in front of

the Python command.

 import threading
 import time
 import RPi.GPIO as GPIO

 class Button(threading.Thread):
 """A Thread that monitors a GPIO button"""

 def __init__(self, channel):
 threading.Thread.__init__(self)
 self._pressed = False
 self.channel = channel

 # set up pin as input
 GPIO.setup(self.channel, GPIO.IN)

									#	terminate	this	thread	when	main	program	finishes
 self.daemon = True

Push-button circuit
experiment wiring diagram.

Human-computer inter facing

133

Notes: # start thread running
 self.start()

 def pressed(self):
 if self._pressed:
													#	clear	the	pressed	flag	now	we	have	detected	it
 self._pressed = False
 return True
 else:
 return False

 def run(self):
 previous = None
 while 1:
 # read gpio channel
 current = GPIO.input(self.channel)
 time.sleep(0.01) # wait 10 ms

 # detect change from 1 to 0 (a button press)
 if current == False and previous == True:
 self._pressed = True

																	#	wait	for	flag	to	be	cleared
 while self._pressed:
 time.sleep(0.05) # wait 50 ms

 previous = current

 def onButtonPress():
 print('Button has been pressed!')

 # create a button thread for a button on pin 11
 button = Button(11)

 while True:
 # ask for a name and say hello
 name = input('Enter a name (or Q to quit): ')
 if name.upper() == ('Q'):
 break
 print('Hello', name)

 # check if button has been pressed
 if button.pressed():
 onButtonPress()

Human-computer inter facing

134

Notes: Arduino interface

To complete this exercise you will need the Python Serial Port Extension. You can

either install this from the Raspberry Pi SD card or download them from

http://pypi.python.org/pypi/pyserial/. You will also need the Debian package

called “arduino”, in order to install the Arduino development IDE. You can

download this from the Debian website.

Obviously, you will also need an Arduino board.

Arduino is an open-source electronics prototyping platform based on flexible,

easy-to-use hardware and software. An Arduino board connected to a

Raspberry Pi is a very useful and powerful combination. You can learn more about

the Arduino platform at the website http://www.arduino.cc/

This example uses an Arduino board connected to a Raspberry Pi using a USB

cable. You do not have to build any circuits to make this program work – that is left

up to your imagination. This program is very simple; it asks for a character on your

Raspberry Pi, and then sends it to the Arduino. The Arduino responds by returning

the character and its ASCII code. Finally, the response is printed on the screen of

the Raspberry Pi.

Human-computer inter facing

135

Notes:Code for the Arduino:

 // set up the serial connection speed
 void setup()
 {
 Serial.begin(9600);
 }

 void loop()
 {
 int inByte;

 if (Serial.available()	>	0)
 {
 // read data from the Raspberry Pi
 inByte = Serial.read();

 // send data to the Raspberry Pi
 Serial.write(inByte);
 Serial.print(" = ");
 Serial.println(inByte);
 }
 }

Python code for the Raspberry Pi:

 import serial

 # set up the serial connection speed
 ser = serial.Serial('/dev/ttyACM0', 9600)

 # main loop
 while 1:
 c = input('Enter a char: ')
 if len(c) == 1:
 # send data to the Arduino
 ser.write(c.encode())

 # receive data from the Arduino
 response = ser.readline()

 print(response.decode().strip())

