
The Linux Command Line

152

Notes:

152

The operating system on your Raspberry Pi is a version of Linux. In all probability,

it looks a bit like Windows, or – more likely – like the Mac OS. It has a graphical

user interface (GUI) that allows you to interact with your folders and files by

double-clicking, right- or left-clicking, or dragging and dropping. If you want to

open a program, you look for it on a menu called something like “Applications”.

That’s all very well, but there is another way to interact with Linux: using the

command line interface (CLI). With the CLI there are no images; nothing to click

on. To get your computer to do something, you must type a properly constructed

text command. Often, you’ll only know that your command has been successfully

executed because your computer won’t respond. If it does respond, something

has gone wrong and it’s giving you an error message.

That sounds like hard work. Do we really want to bother with it? Yes, we do! For a

start, by default, some versions of Linux boot directly into the CLI. To open the

GUI, with all its lovely windows and menus, you then need to type the command

“startx” and press Return. But that’s by no means the only reason to get to grips

with the CLI.

With the command line you can do things that you can’t do using the GUI and you

can do things easily that are difficult in the GUI. Compared with the graphical

interface, the command line hardly uses any processing or graphics power, so it’s

great if you have heavy work for your computer to do. And, if you’re connecting

remotely to a Raspberry Pi that doesn’t have its own monitor, then you’ll have to

use the CLI.

If you’re new to Linux, you may not be familiar with the command line in general

and with Linux commands in particular (they’re sometimes similar to their Windows

equivalents, but often they’re completely different). This chapter is a quick

introduction to the magic of the command line. It contains everything you need to

get started.

The Linux Command Line
Chapter 6

The Linux Command Line

153

Notes: Lesson 6.1: Commands are just programs

When you type into the terminal you are running programs. Most of the commands

listed here run programs that give you the ability to command the system to do

something. When you add programs to your Raspberry Pi, you will be able to run

more commands.

If you enter a command and it doesn’t work, it may well mean that the program

isn’t installed yet. For instance, if you try to create a new text file called “My Linux

Commands” using the Nano text editor, you would type:

	sudo nano "My Linux Commands"

But it might be that, instead of opening the new text file, your system returns the

error message:

	bash: nano: command not found

This just means that you have not installed Nano yet. However, most of the

commands described on this page are the kind of “housekeeping” commands

that come as default, so you shouldn’t have this problem. Each program has an

original author who is acknowledged at the bottom of the main page.

Don’t worry too much about the actual commands used there – I will explain

everything as we go along.

 The Bash shell

To use the CLI, you need to know commands. The default command set is

contained in the “shell” you are using. There are lots of shells out there, but the

one on this Raspberry Pi is called “Bash”. Bash is the default command line shell

on most versions of Linux, as well as Mac OS, so it’s well worth learning.

This chapter covers many of the most common and useful commands. If you can’t

find the command you need, try looking online. There are lots of good guides on

the internet for using the Linux command line.

If you know the command you want to use, but don’t know exactly how to use it

– for instance, you don’t know exactly the right “syntax” – you can use the “man”

(manual) command in Linux. At the command line you could type:

	$ man <command>

man
Displays information about the target, sourced from online

reference manuals.

 Tip...

The “syntax” of a

command means

the way it should

be written to make

it work. That

means the order

of the words, as

well as any

important

punctuation that is

also necessary.

The Linux Command Line

154

Notes:Or, you could use the “info” command:

	$ info <command>

info
Displays online documentation about the target.

In the examples above, substitute <command> with the command you want to

find out more about. A word of warning: the guidance given by “man” is sometimes

a bit formal and very, very detailed. You could almost say, “If you think you know

a command then go to the command’s man page in order to find out that you

don’t really.”

To find out more about Bash, take a look at its Wikipedia entry:

http://en.wikipedia.org/wiki/Bash_%28Unix_shell%29

Typing “man apt-get”
into the command line

returned all this information
on the “apt-get” command

and how to use it.

“Man” is short for manual.

PLACEHOLDER

The Linux Command Line

155

Notes: Lesson 6.2: Command syntax and file structure

Commands take the form:

	<Command> | <Switches> | <Parameters> | <Target>

In guides, such as this one, the brackets “<” and “>” are often used to indicate

the place a command would take in a string of text being typed into the CLI.

The horizontal line “|” is used to denote “or”. Confused? Okay, let’s look at the

example above. We would read that as saying that commands can be used by

themselves OR they can be used with:

• �Switches: single letters, preceded by a hyphen, that adjust what the

command does

• Parameters: things that the command needs to know in order to work

• A target: the thing (such as a file) that the command will be applied to

Let’s look at an example. We’ll start with the “ls” command, which you can use to

see a list of a folder’s contents.

	ls -l /home/brian

This command tells the command line to list, in long format, the contents of the

directory “/home/brian”. The command is “ls”; the switch “-l” tells Linux that you

want the list in long format; and the target of this command is the directory

“/home/brian”. In this example, there are no parameters, so that part of the

command is just skipped.

ls
Lists the contents of directories.

For a slightly more detailed example, let’s look at the “mount” command, which

tells Linux to incorporate a new file system (such as a CD or DVD) into its own file

system structure so that you can browse it.

	mount -F smbfs //workgroup;fred:foo@192.168.1.99/homes /mnt/net

This command tells the operating system to use the username “fred”

and password “foo” (parameters) to make the shared drive called “homes” on

the Windows server at 192.168.1.99 (parameter) appear in the directory tree at

the point “/mnt/net” (target) using the Server Message Block Filing System

(the -F switch).

mount
Makes a file structure available at a new location.

Command Switch Target

Command Switch Parameters Target

The Linux Command Line

156

Notes: Navigating the file system using “cd”

The file system in Linux is hierarchical with nested directories (often called

“folders”) in a “tree”. The top of the directory structure is denoted by the symbol

“/”, and directories underneath “/” are referred to using “paths”, just like URLs in

a web browser.

To go to a particular place in the directory structure, you use the command “cd”,

which stands for “change directory”, followed by its location in the tree. For

instance, the following command will take you to Brian’s “Documents” folder in

his home directory.

	cd /home/brian/Documents

If you want to move up the directory tree, use the command:

	cd ..

For example, if you’re working in the folder “/home/brian/Documents/Project”, the

command “cd ..” would take you back to “/home/brian/Documents”. Make sure

you leave a space between the letters “cd” and the two dots, otherwise the

command won’t work.

To find out more about the “cd” command see its Wikipedia entry:

http://en.wikipedia.org/wiki/Cd_%28command%29

cd
Changes the current working directory.

 Tip...

The names of files

and directories

(folders) are

case-sensitive in

Linux, so the file

“my_stuff” is

different from the

file “My_stuff”.

The Linux Command Line

157

Notes: Listing the files and folders in a particular place

The “ls” command lists all contents of directory you’re working in. There are a

range of switches you can use with “ls” to make it display exactly the files you’re

interested in and all the useful information about those files. We’ve listed a few of

those switches here:

l �“ls”, the command with no switches, lists all the file in the current directory.

l �“ls -l” lists the files and displays the long version of the information about each

file or directory. Output may be colour-coded depending on the terminal

preferences that you have set.

l ��“ls -R” asks for a “recursive” list – that is, a list including the contents of

sub-directories as well as this directory.

l �“ls -A” forces the system to show “hidden” files. Hidden files have names

that start with a dot, which won’t usually be visible when doing a normal

directory list.

Let’s look at two examples. In the first, we use the plain “ls” command with

no switches.

	$ ls
	
	An_Gott_und_meine_Mutter.mid Domestic Programming Test.mid
	An_Gott_und_meine_Mutter.mscz Engineering Quantum Physics Tutoring
	appliances FluidR3 _ GM.ins School Windaz

In the second, we use “ls -l”. This displays the files in long format, telling you,

among other things, the size, owner and security setting on each file.

	$ ls -l
	
	total 336
	-rw-rw-r--. 1 brian brian 2429 Apr 2 20:27 An_Gott_und_meine_Mutter.mid
	-rw-rw-r--. 1 brian brian 4085 Apr 2 19:52 An_Gott_und_meine_Mutter.mscz
	drwxrwxr-x. 4 brian brian 4096 Apr 2 20:38 appliances
	-rw-rw-r--. 1 brian brian 10919 Apr 2 19:52 brotplot.odt

Don’t worry, we’ll go into the details of this information later.

To find out more about the “ls” command, take a look at its Wikipedia Entry:

http://en.wikipedia.org/wiki/Ls

The Linux Command Line

158

Notes: Change ownership of directories and files

In the long List above, the files are owned by Brian and are also in the Brian group.

What if we wanted to change the ownership of some of those files? Then we would

use the “chown” command.

We’ll use the file “brotplot.odt” as an example. Let’s say we want to make Fred the

file’s owner. We would use the command:

	$ chown fred brotplot.odt

If we run the command “ls -l” again, we will now see the result:

	-rw-rw-r--. 1 fred brian 10919 Apr 2 19:52 brotplot.odt

The file is still in group Brian but is now owned by Fred. But what if we want to

make the user “Foo” the owner of the file and also move the file to the “foo” group.

We’d use the command:

	$ chown foo:foo brotplot.odt

If we use “ls -l” again to see the long-format name of our file, we will see:

	-rw-rw-r--. 1 foo foo 10919 Apr 2 19:52 brotplot.odt

To find out more about “chown” command see its Wikipedia entry:

http://en.wikipedia.org/wiki/Chown

chown
Changes the ownership of one of more files.

While we’re at it, take a look at “chgrp” to see how it compares:

http://en.wikipedia.org/wiki/Chgrp

chgrp
Changes the group of one of more files.

The Linux Command Line

159

Notes: Change access to directories and files

When you use the “-l” switch to see the long list of information a directory’s

contents, the results you see are all preceded by a string of letters and dashes.

For instance:

	-rw-rw-r--. 1 fred students 10919 Apr 2 19:52 brotplot.odt

The first character in the sequence, in this case a dash, tells us what the object is.

The most commonly-used characters are:

	 d	 Indicates a directory

	 l	 Indicates a link

	 -	 Indicates a file

Our example above starts with a dash, so we know it’s a file. In this case, it’s

actually a word processor file.

The nine characters that follow, describe access rights for the owner (user), group

and the world (everyone else who may be able to access the file), in that order,

each with three characters. The characters used here are:

	 r	 Read access

	 w	 Write access

	 x	 Permission to execute the program

	 -	 No access of this type

So, if all three groups had all three types of access, we would see “rwxrwxrwx”.

However, whenever someone doesn’t have an access type, its letter is replaced

with a dash.

If we again look at our example above, we can see that:

l �Brian has read and write access to the file.

l �Members of the group called “students” also have read and write access to

the file.

l �Everyone else (the “world”) has only read access to the file.

The “x” flag is not listed at all. Remember, x stands for the ability to execute a file.

If the x flag is not set then the file will not run as a program.

But what if we want to change the file’s permissions? There are various ways

to use the “chmod” command to do this, but probably the easiest is to use

these groups:

	 u	 for user/owner

	 g	 for group

	 o	 for other (everyone else)

	 a	 for all three

The Linux Command Line

160

Notes:
Now, let’s try out the “chmod” command:

	chmod o+w brotplot.odt

This means add write access for the “other” group to “brotplot.odt”. Add is

indicated by the “plus” sign.

	chmod a-r brotplot.odt

This means remove read access for the all three (user, group and other) from

“brotplot.odt”. Remove is indicated by the “minus” sign.

	chmod u+x brotplot.odt

This means add execute access for the user/owner to “brotplot.odt”.

To find out more about the “chmod” command see its Wikipedia entry:

http://en.wikipedia.org/wiki/Chmod

chmod
Changes the access mode (permissions) of one or more files.

The Linux Command Line

161

Notes: Lesson 6.3: The superuser

The “sudo” command introduces the “superuser” or “root user”. The term “root”

is the name for the main administrator in a “Unix-like” system, such as Linux.

There are many commands that only the root user can run.

Depending on the version of Linux you are using, you will either have to log on as

the root user or prefix your command with “sudo”. The default Debian distribution

of Linux, for instance, has no root password set. So you will have to use the

“sudo” command.

By using “sudo”, you’re saying, “Do the following command as the root user.”

When you do this, you will be asked for your password and, if you have the system

permissions of a root user (commonly called “being in the admin group”), then

the command will be run. If you don’t have root permissions, you will get an

error message.

Let’s look at the example of adding a new user to your system, something that

only the root user can do. On Debian, the command would look like this:

	sudo adduser brian

This will start a script allowing you to set up a new user called “brian”. If you ever

try to do something in the command line and get the error message, “Only root

can ...” then try the sudo command – it may fix your problem.

To find out more about “sudo” command, see its Wikipedia entry:

http://en.wikipedia.org/wiki/Sudo

sudo
If you have the appropriate permissions, execute the following

command as the superuser.

 Becoming the admin user

There is another way of doing things as root user and that is by using the “su”

command, which stands for “substitute user” (or superuser). Invoking the “su”

command means “become the root user”.

As before, you’ll be asked to enter your password to make sure that you have

superuser rights. Once you have successfully authenticated with your password,

all commands run as the superuser.

In some systems, however, you won’t be able to use the “su” command because,

by default, the root user isn’t enabled. In this case, you will have to enable the root

user, using this command:

	passwd root

The Linux Command Line

162

Notes:You will be asked to enter and then confirm a new root password. Assuming you

can manage to enter the same password twice, you now have a root user and you

can issue the command:

	su -

When you enter passwords in Unix-like systems, the prompt remains blank: no

blobs or asterisks stand in for the characters in your password. Don’t be put off;

the password is being entered nevertheless.

Finally, a word of warning: if you habitually do everything as the root user,

eventually you will do something both educational and disastrous. For example,

you could invoke:

	rm -r -f /*

This will delete all the files in the whole system.

Or you might absent-mindedly type:

	$ rm -r -f ./*

That would just delete the files in the current directory. And you do not usually get

warnings as root user (other than this one). The first thing you’ll know about your

error is when all your files have suddenly vanished.

Only use root privileges when you really need them.

To find out more about the “su” command. see its Wikipedia entry:

http://en.wikipedia.org/wiki/Su_%28Unix%29

su
Become a superuser.

passwd
Create or change a password associated with the identified user.

 Tip...

Don’t ever use

these commands

when operating as

a superuser!

The Linux Command Line

163

Notes: Lesson 6.4: Creating and destroying files and directories

Finally, let’s look at creating and destroying file and directories, as well as taking

a closer look at the mount command.

 Create a new empty file

To create a new empty file, go to where you want the file to be and type:

	$ touch <filename>

The “touch” command actually updates a file’s “last accessed” time to the current

time and date, but if such a file doesn’t already exist then it will create a new file

of that name, with a file size of 0.

To find out more about the “touch” command, see its Wikipedia entry:

http://en.wikipedia.org/wiki/Touch_(Unix)

touch
Update the named file’s access time and modification time (and

dates) to the current time and date. If a file doesn’t exist then a

new file will be created with a file size of 0.

 Create a new empty directory

To create a new directory, go to where you want the directory to be and type:

	$ mkdir <directory name>

To find out more about “mkdir” command, see its Wikipedia entry:

http://en.wikipedia.org/wiki/Mkdir

mkdir
Create one or more directories in the current location.

 Remove a file

To delete a file, go that file's location and type:

	$ rm <filename>

To find out more about the “rm” command, see its Wikipedia entry:

http://en.wikipedia.org/wiki/Rm_%28Unix%29

rm
Remove (delete) one or more files in the current location.

The Linux Command Line

164

Notes: Remove a directory

To delete a directory, go its location and type:

	$ rm -r -f <directory name>

This uses the “rm” command we used above, but the extra switches tell it

to remove the directory, all its contents and also any sub-directories and

their contents.

The “-r” means “recursive”, which – in the case of a directory – removes the entire

directory and all its contents, including sub-directories. Do be very sure that you

mean this before using it – there’s no “undo” option!

The “-f” switch indicates that the action is “forced” – that is, the program will

remove write-protected files without prompting. This is also dangerous, so be

very careful when using this as well.

A safer, but less powerful, option is to use the “rmdir” command:

	$ rmdir <directory name>

This will also delete directories, but only if they’re empty.

rmdir
Remove (delete) one or more directories in the current location,

provided they are empty.

 Connect to a device or filing system

The “mount” command allows you to connect a Unix system to external devices.

There is no “C” drive, as in Windows. What happens in Linux is that a device is

“mounted” somewhere in the filing system. When you navigate to that place, the

items offered by the device will appear at that point.

This is a complex command. The switches, parameters and target of the mount

command will vary according to the protocol of the system being mounted. Some

things will “auto-mount”. This is why, when you plug an SD card into a modern

Linux system, the filing system will automatically pick it up.

Manual mounting requires a “mount point”. That means a directory that will be

filled with the mounted device when it is mounted. Often, this is in the directory

“/mnt/” somewhere. Generally, before mounting new media, you must first ensure

that there is a mount point. If there isn’t, then you must create a directory at the

point needed: for instance...

	$ mkdir /mnt/netfolder

The Linux Command Line

165

Notes:You must also make sure that you use the necessary switches, parameters and

directories. For instance, from the previous exercise:

	mount -F smbfs //workgroup;fred:foo@192.168.1.99/homes /mnt/net

This, as we learned earlier, tells the system to mount the shared drive called

“homes” on the Windows server at 192.168.1.99 , in the directory tree at the point

“/mnt/net”, using the Server Message Block Filing System (the -F switch).

To find out more about the “mount” command, see its Wikipedia entry:

http://en.wikipedia.org/wiki/Mount_%28Unix%29

 Further learning

The commands presented here are just a small selection of all the commands

available on your system. You can find a comprehensive list of Linux commands

on the O’Reilly website:

http://www.oreillynet.com/linux/cmd

The Linux Command Line

166

Notes:

166166

 Lesson 6.5: Remote access to the Raspberry Pi

OpenSSH is an application that allows you to securely access Linux systems

remotely over the network. You can use OpenSSH simply for secure file sharing.

But it also allows you to log on to a system and control it over the network, even

using the GUI, just as if you were sat in front of it.

The default installation of Linux on your Raspberry Pi should have “SSH daemon”

running. This means that your Raspberry Pi is listening on port 22 for a remote

computer asking to make a connection to it. In your case, this will probably mean

your normal desktop or laptop computer.

 Running a remote CLI

To connect to your Raspberry Pi, you will need an SSH client program. Linux and

the Mac OS already have these installed. For Windows, you can download Putty

(http://www.chiark.greenend.org.uk/~sgtatham/putty). Refer to the manual of

your chosen SSH client program for more information on how to install and use it.

In order to make a successful connection, you must have port 22 open on both

your remote host and the Raspberry PI. You will also need to set up a suitable user

on the RPi (as we did earlier in this chapter).

If you are using a Linux or Mac client, simply enter this at the command line:

	ssh <IP address of RPi> -l <username on RPi>

<IP address of RPi> should be replaced with the IP address of your Raspberry Pi,

and <username on RPi> should be replaced with the username of your Raspberry

Pi, as you set up previously. The character between them is a lower-case “L”.

You should see output similar to this:

 [brian@fc16toshiba ~]$ ssh -X 192.168.1.104 -l brian
 The authenticity of host '192.168.1.104 (192.168.1.104)' can't be established.
 RSA key fingerprint is 26:a4:a1:ab:c2:ff:50:99:d7:e1:49:6e:f2:90:fb:90.
 Are you sure you want to continue connecting (yes/no)? yes
 Warning: Permanently added '192.168.1.104' (RSA) to the list of known hosts.
 brian@192.168.1.104's password:
 Linux raspberrypi 3.1.9+ #9 Mon Apr 9 20:50:36 BST 2012 armv6l
 The programs included with the Debian GNU/Linux system are free software;
 the exact distribution terms for each program are described in the
 individual files in /usr/share/doc/*/copyright.
 Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
 permitted by applicable law.

 brian@raspberrypi:~$

At this point you are up and running. Everything you type is actually happening on

your Raspberry Pi.

The Linux Command Line

167

Notes:

167

 Running a remote GUI

To remotely connect to your Raspberry Pi and use its GUI you will need to

install an “X server” on your machine. Linux has an X server built in. For Windows,

try Xming (http://www.straightrunning.com/XmingNotes) or Cygwin

(http://www.cygwin.com) – you can download both for free. For the Mac OS, go

to “Shell > New Remote Connection” and choose “Secure Shell (ssh)”.

The following command uses the X switch to tell SSH to send the X commands to

the X server on your host. Enter the following:

	ssh -X <IP address of RPi> -l <username on RPi>

 What is an X server?

A Linux computer (or other Unix-like system) running a GUI is almost certainly

running “X” and also an X server. The X sends commands to the X Server about

what kind of things to put on the screen, and the X server does it.

This means that the GUI and the X server are separate. This also means that you

can run a program on the Raspberry Pi and have the graphical output appear on

the screen of the X server somewhere else on the network. This removes a large

amount of processor demand from the Raspberry Pi. And it also means that you

can just plug your Raspberry Pi into your network, rather than giving it its own

monitor, mouse and keyboard.

The Linux Command Line

168

Notes: Open a remote browser

Let’s see what happens when I try to run a web browser remotely. The web

browser on the Raspberry Pi is called Midori, so this is what we need to enter

from the prompt after we connect remotely:

	brian@raspberrypi:~$ midori &
	[1] 5773

We need to include the “&” symbol after the program name because this tells

the server to launch it as a separate process, which means we get our command

line back.

We get the response “[1] 5773”, which is the process number of the Midori

program now running.

Sometimes you will get GTK errors, which report library shortcomings on host

(the RPi) or server (your X server) but the process is pretty robust.

Midori running in Remote
Gnome 3 UI using the

Fedora 16 X Server.

