
A beginner’s guide to Scratch

7

Scratch is visual programming environment. With it, you can create your

own animations, games and interactive art works. And, while you’re

doing that, you’ll learn some important principles and techniques of

programming without actually having to write your own code. It’s a

great way to get started. To find out more about Scratch, visit the web

address scratch.mit.edu

Notes:

 How to use this guide

We have tried to make this guide as straightforward to use as possible. To help

you with the exercises in this chapter, we have already collected some little bits

and pieces you will need, such as backgrounds, costumes for sprites, sound

effects and complete examples of Scratch projects.

These can be found on the Raspberry Pi educational release SD card, in the folder

/usr/share/scratch/RPiScratch. Wherever you see the SD card icon in the margin,

that means we are referring to a file that can be found on your Raspberry Pi

SD card. Go take a look! They can also be downloaded from Google Drive at

http://goo.gl/MpHUv

A beginner’s guide to Scratch
Chapter 1

A beginner’s guide to Scratch

8

 The Scratch interface

Share

save

language

sprite rotation style

current sprite info
toolbar

TABS
This is where

you edit scripts,
costumes or

sounds

BLOCKS
PALETTE
The blocks
of code
you’ll use
to program
your sprites

Green flag
A way to start
scripts

VIEW MODE
Change the size

of the Stage

PRESENTATION MODE
Go fullscreen to show

off your projects

STOP SIGN
Stops your
scripts

STAGE
Where your Scratch
projects do their thing

MOUSE X-Y DISPLAY
Shows the location of
the mouse cursor

NEW SPRITE
BUTTONS
Create or import
new sprites

SPRITE LIST
Find all your sprites
here. Click one to
select and work
with itscripts area

Drag blocks in, snap them together into scripts

A beginner’s guide to Scratch

9

 Lesson 1.1: Scratch basics

Learning objective: In this exercise, you will learn how to use the Scratch

graphical user interface (GUI), how to create characters (sprites and costumes)

and stages (backgrounds) for your projects, and how to add scripts.

Resources: The sprites “cat” and “roman_cat”, and the background

“roman_stage”.

Have you ever been in a school play? If you have, you’ll know that to put on a play

you need a stage, actors, costumes and a script. Think of Scratch as being a bit

like a play. The actors are called “sprites”.

To make your sprites move and talk, you need to give them instructions. You do

this by writing “scripts” using blocks of code from the Blocks Palette and Scripts

tab on the left of the screen.

That’s enough introductions for now; let’s get to grips with the program itself.

Open Scratch from your Raspberry Pi’s Applications menu. You should now be

looking at the Scratch graphical user interface, or GUI (pronounced “gooey”).

Have a look around and tick the boxes below as you find these items:

Click on the Scripts tab, can you see any instructions for the cat to follow?

You can dress your sprites in “costumes”, and each sprite can have more than

one costume. The “stage” is the area on the screen in which your sprites will

perform the tasks you write for them.

 1. �The stage (a big white screen)

 2. A sprite (clue: it’s a cat)

 3. The two costumes that your sprite can wear (click on the Costumes tab)

 4. The Scripts tab

Notes:

A beginner’s guide to Scratch

10

 Let’s have some fun with the cat

First, let’s give the cat something to say. We’ll start with “Hello, World”. This is

generally the first thing a computer programmer learns to do (don’t ask me why).

As you are now learning a programming language, you’d better start with

“Hello, World”, too.

 Making the cat talk

To make the cat say “Hello, World”, we’re going to be working with “blocks”.

These are handy pieces of code, each containing an instruction for your sprite

to follow.

There are eight different types of block. These can be found in the top-left corner

of the Scratch GUI. They are colour-coded, so remember the colours. Find out

what they are and complete their names in the table below:

M... C...

L... S...

S... O...

P... V...

Now, follow these simple steps to make your cat talk:

1 �Click on the cat sprite in the

Sprites List (bottom right) to

make sure that it’s selected.

2 �Click on the “Looks” button

in the Blocks Palette to make

the Looks blocks appear.

3 �Click on the block labelled

“say [Hello] for [2] seconds”

and drag it to the Scripts tab.

4 �Replace “Hello” with “Hello,

World”. Double-click the

block and your cat should

say: “Hello, World”.

Notes:

A beginner’s guide to Scratch

11

We have to run a program to make it work. You can do this by just double-clicking

your script, if you only have one script. But if we have more than one script,

we might want to start them at the same time. We can use a “green-flag event”

for this.

To find the block for green-flag events:

1. �Click on the Control button in the Blocks Palette.

2. �Find the block labelled “when [picture of a green flag] clicked”.

3. �Select it, then drag and drop it to the top of the script you’ve created in the

Scripts tab. Make sure it snaps into place.

You are now ready to run your first Scratch program properly. Just click on the

green flag symbol at the top-right-hand side of the Scratch window, just above the

stage, and watch the cat do its thing.

 Over to you

Question: For how long did the cat say “Hello, World”? _____ seconds

Task: See if you can change the block to make the cat say “Hello, World” for

5 seconds.

Notes:

A beginner’s guide to Scratch

12

 Changing the way the sprite looks

1 �Click on your sprite to select it.

In the Scripts area, click on the

Costumes tab.

2 �We are going to make a third

costume for the cat, so click

on Copy. A new cat costume

should appear.

3 �Select “costume3” and click on

Edit. This will open the Paint

Editor. Experiment with all the

buttons and tools to find out

what they do.

4 �Once you feel at home, draw

some clothes on the costume

and click on OK. I gave my

sprite a toga to make it look

like a Roman Emperor.

5 �Next, select the Scripts tab,

click on the Looks button

and select the “switch to

costume []” block.

6 �Drag it under the Scripts tab and

use the drop-down menu to

select “costume3”. Double-click

on this block and the cat will

change his costume.

Now you have two blocks under the Scripts tab, one to say “Hello, World” and one

for switching the costume. You can put them together by moving one so that it is

just above or below the other. If a white line appears, the two blocks will snap

together. Two or more blocks stuck together make a “script”.

Notes:

That cat’s right: he
looks like he’s lost

in a snow storm.
We need to give
him a stage on

which to perform.

 Over to you

Question: Now that we have a script with two blocks, what happens when you

double-click it?

Task: See if you can arrange three blocks to make the cat change to his toga

costume, say “Hello, World”, then change back to its normal costume.

A beginner’s guide to Scratch

13

 The stage

It’s time to give that cat a stage. We could be lazy and just import a picture to use as

a background, but let’s say that we’re feeling energetic and want to draw our own.

3 �Alternatively, you can import a ready-made

background. Select Stage, then Backgrounds and

then click on the Import button.

4 �Have a look at all the available backgrounds

before you pick the one that you want. We chose

“roman_stage”. Select the background by clicking

on it with your mouse, then click on OK.

1�Click on the stage in the Sprite List (bottom-right of

the screen). Now click on the Backgrounds tab for the

stage and click on the Edit button.

2 �As before, the Paint Editor will open. Draw a stage

for your sprite. When you have finished, click on OK.

You can make further changes at any time by clicking

on Edit.

Notes:

A beginner’s guide to Scratch

14

 Tip...

Use a name that

will help you to

find the project

again. Always use

an _ (underscore)

between words in

filenames – don’t

leave an empty

space.

Notes: Saving your work

This is a good time to save your project. You would be wise to do this every 10

minutes or so, then you can be sure that you won’t lose any of your hard work.

When working on a big project, save it in two places, then you have a backup.

To save your project, click File, then Save – the Save Project window will open.

By default, it will save your work to the Scratch Projects folder. This is a sensible

place to store your work, so type in a new filename, at the bottom. I’ve called mine

“roman_play”, so pick a different file name for your project or you will save yours

over mine! Click on OK to save.

Wow! That is a lot for the first lesson. Have a play with Scratch – experiment with

different blocks of code to find out what they do. Then come back when you have

had a good rest and try Lesson 2.

A beginner’s guide to Scratch

15

 Lesson 1.2: Moving sprites

Learning objective: In this exercise, you will learn how to move sprites

around the Scratch screen in a controlled way and how to tell a joke.

Resources: The sprite “roman_cat” and the background “roman_stage”.

The cat is feeling a bit lonely, so we’d better create some characters for it to play

with. You can either paint your own sprites or import sprites from the Scratch

Costumes folder. Use the New Sprites buttons to do this.

On the right-hand side of the program, just below the stage and above the Sprite

List, you’ll see three buttons: the New Sprite buttons. It’s these we’re going to use.

I want to add a time-travelling boy to my stage. To keep things simple, and to let

us get on with some more programming, we’re just going to import him.

Click on the middle New Sprite button and import the sprite “boy4-walking-c”. But

wait a sec: he’s facing the wrong way! No problem. Go to the Costumes tab and

click on Edit. Use the Flip Horizontally button to make him face to the left.

Notes:

paint new sprite

choose a new sprite from file

get a surprise sprite

A beginner’s guide to Scratch

16

There are also buttons to make your sprite bigger, smaller, rotate counter-

clockwise, rotate clockwise, as well as flip horizontally and flip vertically. Try them

out. I have also used the shrink button to make my boy smaller.

 Make your sprites tell a joke

Let’s make the sprites tell each other a joke. You can do this using the speech

block from the Looks category.

You could try a simple ‘knock knock’ joke to start with.

But wait! Are you finding that both of your sprites are talking at the same time.

To fix this, from the Control block add the “wait [1] secs” block to the second

sprite, before the “say” block.

Use the Import
Sprite button

to find and
import the sprite

“boy4-walking-c”.

From the
Costumes tab,
click Edit and

use the Flip
Horizontally tool.

Notes:

A beginner’s guide to Scratch

17

 Positioning your sprite

Ok, we’ve told a joke. But this play is looking a bit static, so let’s make our

characters move. The first job is to move our two characters to their start points.

In my play, the cat will come in from the left and the boy from the right.

The coordinates of any point on the stage are shown at its bottom-right-hand

corner. Move your mouse around the screen and watch the numbers change.

Task: Use your mouse to find the centre of the screen. Move the mouse pointer

until it’s exactly over the point x: 0 y: 0. Now let’s position our sprites.

1. �Select the cat sprite then, in the Blocks Palette, click on the Motion block

labelled “go to x: [0] y: [0]”.

2. �Change the values in the block to x: -240 y: -80. This will take the cat to the far

left of the stage.

3. �Next place a “wait [1] secs” block into your script. This will give you time to see

your cat before it moves.

4. �Now add a second “go to x: [0] y: [0]” block. Use your mouse to work out the

x coordinate just left of centre on the stage, to which we want to move the cat.

Repeat this process for your other sprite, positioning it slightly to the right of

centre stage. Ideally, the two sprites should move from the edges of the screen to

stand face to face, separated by a small gap.

Now you need to make the sprites tell a joke. Remember to leave a short delay

after each sprite speaks, otherwise they’ll talk over each other. Have a look at the

screenshots to see our code (and our fantastic joke).

You may have
come across x

and y axes when
creating graphs.

the x coordinate

the
Y
coordinate

 Tip...

Use your mouse

pointer to find the

coordinates of a

position on the

stage and make

a note of those

coordinates on

a piece of paper.

Notes:

And here’s our code for the cat sprite.
Does your looks the same?

This is what our code for
the boy sprite looks like.

A beginner’s guide to Scratch

18

 Over to you

Task: Now add some code to your other character to move it to the right of the

stage and then after a short delay move it into the centre stage.

Well done! You have certainly got the hang of moving sprites about

the screen. Why not add some more characters to your stage and get

them to tell jokes?

If you are having problems, you can load the sample code, “roman_play.sb”, to

see how the program is put together. Feel free to change things and to experiment,

as this is a great way to learn.

 Lesson 1.3: Animation (loops)

Learning objective: In this exercise, you will learn how to use repeat loops

to create simple animations.

Resources: The sprites “bee”, “female_flower” and “male_flower”, and the

background “flower_bed”.

With its animated characters, Scratch is great for telling stories. I have to do a

school science project on pollination, so I have decided to use Scratch to tell the

story of pollination in moving pictures. You can help me by following these

instructions to animate a bee in flight.

First, open the file “bee1” from the “Animals” folder in the Scratch gallery. Next,

import the background “flower_bed”, this time from the “Nature” folder in the

Scratch gallery. Delete the cat sprite; we don’t need it for this project.

Copy “bee1”, then edit “bee2” using the Select and Flip Horizontally tools, to

make its wings point downwards. Together, the two costumes – “bee1” and

“bee2” – will become an animation of a flying bee.

Copy your bee,
then edit “bee2”
so that its wings

point downwards.

Notes:

A beginner’s guide to Scratch

19

We need some script to make the bee look as if it is flying. We do this by switching

from one costume to another and back again, making the bee appear to flap its

wings. As we do this we will also make the bee move forwards.

Now, build your own script to make the bee fly. You will need blocks from Control,

Looks and Motion. If you get stuck, have a look at the screenshot of our code.

You’ll find it further on in the lesson.

This is the code to
make your bee fly.

Instead of using the
green flag to run my

code, I will use a
“when Sprite1

clicked” block from
Control. The code

will run when I
click on the bee.

Here are the steps you need to follow:

1. �Start with costume “bee1”.

2. �Add a “wait [0.2] secs” block, so that the viewer has time to see the costume.

3. �Move the bee on 10 steps, before switching to costume “bee2”.

4. �Add another “wait [0.2] secs” block, so that the viewer has time to see the

second costume.

5. �Move the bee on another 10 steps.

But we need to do this more than once. To make the bee fly across the screen,

we might have to repeat this 20 times.

Don’t panic! You are using a computer. Computers are fantastic at doing things

over and over again. They can do this very accurately and never get bored, tired

or fed up.

What we need is a repeat loop.

Notes:

This is what we use to program the computer to repeat something over and over

again. You will find the repeat loop (“repeat [10]”) in the Control blocks.

A beginner’s guide to Scratch

20

It looks a bit different because it has a gap so that we can put code you want

to repeat inside it. Just drag the “repeat [10]” block to sit directly under the

“when Sprite1 clicked” block. It will automatically fit around your block of code,

causing it to repeat itself.

Here is the code we need to animate the bee so that it flies all the way from one

side of the screen to the other.

 Over to you

Question: Why do you think I have increased the number of times it repeats

from 10 to 20?

Task: Some of the Scratch sprites already have two costumes. Check out the

Scratch cat sprite. Use its two costumes and code similar to the example on the

left to make it walk.

Using the repeat
loop, you can make

the sprite do the
same actions over

and over again.
So the bee flaps its
wings up and down

many times.

 Tip...

If your bee flies in

the wrong

direction, check

the sprite to make

sure that it is

facing in the

correct direction.

With the sprite

selected, look at

the bar above

the Scripts tab.

The “forward”

direction of a

sprite is indicated

by a little blue

line. The bee on

the left will move

90° to the vertical

and the bee on

the right will move

60° to the vertical.

You can rotate the

line to change the

move direction of

a sprite.

Notes:

A beginner’s guide to Scratch

21

 Hands on: the Pollination Project

This is the storyboard of my pollination project. I added two more

costumes to my bee sprite to show it carrying pollen and I have

drawn a flower sprite with some stamens in blue.

But I didn’t want to stop there. I wanted the bee to visit the second flower –

a female – from the other side of the screen, so I copied all four costumes for the

bee sprite and flipped them horizontally.

I also copied, flipped and edited the male flower to create a female flower sprite.

I have given it two costumes. One shows the stigma without pollen and the other

with pollen. Let’s have a look at the resulting animation.

I also decided that I only wanted one flower on screen at a time. So, I had to add

scripts to make my flowers disappear and appear at the right points in the

animation. I used the Looks blocks “show” and “hide” for this.

1

3

5

4

6

2

Notes:

1. �A bee flies towards a male flower. 2. �The bee pauses to suck up nectar

and collect pollen.

3. �The bee then flies off with pollen

from the flower’s stamens.

4. �The bee flies toward the female

flower.

5. �The bee sucks nectar and this time

deposits pollen.

6. �The bee flies off leaving pollen on

the stigma.

A beginner’s guide to Scratch

22

Here’s the code for all three sprites in the pollination project.

Because I had three different sprites with their own scripts, I used the

“when [green flag] clicked” event to run them all together.

Wow! That is quite a complicated project, but if you break up your

animation into lots of little scenes it makes it easier to plan and

to program.

To see what the whole project looks like once it’s finished, open

RPiScratch/Projects/ pollination.

Code for the bee Code for the male flower

Code for the female flower

 Tip...

Import existing

sprites and a

background from

the Scratch

picture folders.

This can save

you a lot of time.

Notes:

A beginner’s guide to Scratch

23

Notes: Lesson 1.4: Maths Cat

Learning objective: You will learn how to use variables to store data for

using in a program. You will also learn how to use operators to do simple sums.

Resources: The default sprite “cat” on the default white background.

Do you find maths difficult?

Can you imagine what it would be like to be able to do millions of sums in seconds

and always get them right? Even the most complicated sums you can think of?

Computers are fantastic at maths. In fact, maths is what they do best. We can

program the Scratch cat to do maths. The cat will ask for some numbers and then

do the sums. So, how are we going to put numbers into the program for the cat

to use?

When we input numbers (put numbers into a computer), the computer has to have

somewhere to store them. Different people might input different numbers, so

these numbers are going to be different each time.

When programming, we store numbers in something called a “variable”. One way

of thinking about a variable is as a box, or container, in which we can store

numbers, letters or words.

We may have more than one variable in a program, so we give them different

names. The name can be as simple as a single letter (or as complicated as you

like!). For example, if it is storing a number, we might call the variable “n”.

In the diagram, we have stored the number “7” in the variable “n”.

So we can now say “n = 7”.

In the example above, we created a variable called “n” and stored the number “7”

in it. In Scratch, you would do this in two steps: first creating the variable “n”, and

then using a block from Variables to set its value to “7”.

7 7
n n

A beginner’s guide to Scratch

24

If you wanted to use a two-word name for your variable, you would separate the

words with an underscore (the “_” character), not a blank space.

 Using variables in Scratch

Ok, now we’re going to create and use variables. Click on Variables in the Blocks

Palette and create a variable called “game_score”.

 Tip...

Give each variable

a name that

reminds you what

is stored in it.

For example,

if you are creating

a game and you

use a variable to

store the score,

then a good name

for the variable

would be

“game_score”.

Notes:

1�Click on the Variables button, then on

the button labelled “Make a variable”.

This opens the “Variable name?”

dialogue window. Enter the name

“game_score” for your variable

and click OK.

2 �Drag “Set [game_score] to [0]” to

the Scripts tab. Then, from Control,

drag the block “when Sprite1

clicked”. Join the two together

to make a script.

3 �The default value for new

variables is “0”. Select the block

“set [game_score] to [0]” and

change the value to “100”.

4 �Finally, from Looks, I have used a

“say [Hello] for [2] secs” block but

changed it to “say [Great, I’ve got

100 points] for [2] secs”.

A beginner’s guide to Scratch

25

Notes:In this example, we set the cat’s score to 100 points by clicking on the cat sprite.

But there are plenty of other ways to put a number into a variable. The method you

choose will depend on how you want to use the variable.

 Inputting the numbers

Your teacher has set you four sums. The sums are:

56 + 39 =
87 - 42 =
16 x 9 =
240 ÷ 6 =

We’re going to show you how to get Maths Cat to do this homework for you. Let’s

start with the first question, 56 + 39. If you get stuck, refer to the image of the

completed code at the end of this exercise.

First, create three variables, and name the first two “first_number” and

“second_number”. You’ll use these to store your two numbers. Name the third

variable “result”. This is where you’ll store the answer to your sums.

To input the first number you need to use a Sensing block to tell the user what to

do. Drag the block “ask [What’s your name?] and wait” to the Scripts tab. Change

the value to “What’s the first number?”.

The answer given by the user is then entered to a variable, where it’s stored for

use in your sum, by using a combination of a set “variable” block from Variables

and an “answer” block from Sensing. Let’s see how.

Click on Variables, select the block “set [first_number] to [0]”, drag it to the Scripts

tab and snap it to the previous block.

A beginner’s guide to Scratch

26

Click on Sensing, select the block labelled “answer” and drag it onto the

number ”0” in the previous block. Your script should look like the one in the

screenshot above.

Now the program knows the first number in your sum. To tell it the second

number, repeat the process above but remember to change “first_number” to

“second_number” in the drop-down box of the variable block.

 Now for the really clever bit

To do sums in Scratch, you need something called an “operator”. That’s just a

fancy term for maths signs such as +, -, × and ÷. Yes, you guessed, we find these

under the green Operators category in the Blocks Palette.

We’re going to use the “add” operator, so drag it to the Scripts tab. We’ll use it to

add the variables “first_number” and “second_number”.

From Variables, grab the variable “first_number” and drop it into the first blank

space in the “add” operator. Drop “second_number” into the second blank space

(see the screenshot on the next page).

Click Operators:
the “add” operator

(“[] + []”) is the
first one on

the list in the
Blocks Palette.

Notes:

A beginner’s guide to Scratch

27

We’re not finished yet. We’ve told the program to add our numbers, but we need

to store that answer in one of our variables.

From Variables in the Blocks Palette, drag “set [first_number] to [0]” to the Scripts

tab. Change “first_number” to “result” and drag your “add” operator onto the

number “0”. Your block should look like this:

Notes:

Finally, we also need to tell Scratch to display the answer to the sum. Otherwise,

it will keep it to itself (and that’s no good to us).

Click on Looks in the Blocks Palette. Select “say [Hello!]” and drag it on to the

Scripts tab. From Variables, drag the variable “result” and drop it onto “Hello!”.

The image below will show you what we mean.

And that’s it! I have included the whole program below. We’ve added in some

extra blocks, to make the cat a bit chattier but the basics are the same as the

script we built above.

and

But hang on a minute: if you tried to make the cat do all the homework you will

have noticed a big problem.

The cat can only do addition! Don’t panic – a quick edit to change the program

slightly will do the trick.

Use this screen-
shot to build the

whole script. And
remember, each

time you want the
cat to do another

sum you will have
to click on the

green flag.

 Tip...

Make sure all the

blocks snap into

place properly,

especially when

you have to snap

blocks on top of

other blocks.

A beginner’s guide to Scratch

28

Click on Operators once more in the Script block and you’ll see that there are

other operator blocks there too: for subtraction, multiplication and division.

If you want the cat to take away then simply swap the “add” block in the script

above for a “subtract” block, and so on until the cat has done all you homework

for you.

What a helpful cat!

add

subtract

multiply

divide

 Over to you

Task: Program the Maths Cat to do the rest of the homework sheet – you will

have to change the operator each time so that the cat does the right kind of sum.

To see a working example of this script, open RPiScratch/Projects/maths_cat.

Notes:

A beginner’s guide to Scratch

29

 Lesson 1.5: Artificial intelligence

Learning objective: In this exercise, you will learn how to put data into a

program and get your program to make a decision based on that data.

Resources: The sprites “cat” and “bluedog”; the backgrounds “brick-wall1”,

“sydney”, “paris” and “new_york”.

Artificial intelligence is an area of computer science where people try to make

computer programs that are smart in some way or another. The idea is to make

computers seem like they are thinking like humans. This is actually quite tricky, as

you can imagine, so here we are just going to give you a tiny taster of how you can

make your programs seem a bit intelligent.

The cat clearly thinks it’s clever, so let’s give it a chance to show us just how

intelligent it is. To do this, we will use some more inputs and outputs, together with

something called a “conditional statement”. That sounds very complicated, but it

isn’t really.

For my example, I have created two sprites: a cat and a dog. The cat is going to

ask the dog a number of questions, so we need some variables in which to store

the answers.

Create the following variables (we’ll tell you what they’re for in a minute):

age

country

holiday

name

Before we begin, you should also import the “bluedog” sprite and the backgrounds

“brick-wall1”, “sydney”, “paris” and “new_york”. You will need them for what

comes next.

 Does the dog want a holiday?

Notes:

First, we have to work out whether the dog actually wants to go on holiday. Select

the cat sprite and build the script you can see in the screenshot above to help the

cat find this out.

A beginner’s guide to Scratch

30

Each time we use this program the country variable will be set to a letter. But the

next time we use the program, we want the country variable to be empty. So we

“empty” it by setting it to “0”, ready for the next user.

Question: Study the script. Can you work out what it will do when the program

is run?

As the cat asks questions, the dog’s answers are stored in the two variables

“holiday” and “age”. The script will use these later.

Now for the intelligent part: the conditional statement. We are going to find out if

the dog wants to go on holiday. Time to think logically: the dog will either answer

“yes” or “no”.

We need to find a way of letting the cat know the dog’s answer and of prompting

the cat to act on that answer.

From Control in the Blocks Palette, select an “if” block.

Notes:

You will also need an operator block from Operators to test the input. Grab the

“equals” operator (“[] = []”) from the Blocks Palette.

From Variables in the Blocks Palette, drag and drop the “holiday” variable into the

left-hand side of the operator and type “no” into the other side.

Finally, we drag and drop the operator block onto the “if” block.

Now, from Looks place the block “say [Hello] for [2] secs” inside your “if” block –

that is, in the “bracket” cut into the side of the block, so that the “if” block

surrounds it. Change “Hello” to “OK, no holiday for you!”.

But hang on a second, what if the dog does want to go on holiday? Our “if” block

doesn’t allow us to include a possibility for a “yes” answer.

If the dog does want to go on holiday something else must happen. We need to

replace our “if” block with an “if/else” block.

The code to find
out if dog wants
to go on holiday

A beginner’s guide to Scratch

31

Notes:

Take the little script that was in your “if” block and put it into the “if” bracket of an

“if/else” block. The result should look like the screenshot below.

 Is the dog old enough to go on holiday?

We also need to find out if the dog is old enough to go on holiday by herself. We

will need to use a second “if/else” block. Drag it onto the Scripts tab, but don’t

attach it to your script just yet – leave it floating by itself.

We’re going to ask the dog how old she is. Depending on her answer, there are

two possible outcomes:

1. Her age is less than 10, and she’s not allowed to go on holiday.

2. Her age is greater than 10, and she is allowed to go on holiday.

If the dog’s age is less than 10, we want the cat to say, “Sorry dog, you’re too

young to go on holiday.”

Using your “less than” (<) operator, as well as blocks from Variables and Looks,

build the piece of script that you see in the screenshot on the next page.

Build this script inside the “if” bracket of your second “if/else” block.

The “less than”
operator.

The “if/else”
block.

A beginner’s guide to Scratch

32

Before we move on to the next step, take your second “if/else” block and place it

inside the “else” bracket of your first “if/else” block: the one you used to find out

if the dog wanted to go on holiday.

Your script should now look like the block of code in the screenshot above.

 Over to you

Question: What will the cat say if the dog’s age is 9?

Question: What will the cat say if the dog’s age is 12?

Question: What will the cat say if the dog’s age is 10?

 Where does the dog want to go?

To be fair to the dog, we should let her choose where to go on holiday. We will give

the dog three possible holiday destinations: Australia, France and the USA.

To keep it simple, we won’t ask the dog to enter the country’s name, just the

initial letter.

Using the information you can see in the screenshot below, add blocks to your

script to make it ask the dog where she wants to go on holiday. Store the dog’s

answer in the variable “country”.

You will need blocks from Looks, Sensing and Variables. Place them in the “else”

bracket of your second “if/else” block.

Notes:

A beginner’s guide to Scratch

33

Notes:Finally, complete your script with a “wait [] secs” block and “stop all” block from

Control. Set the value of the “wait [] secs” to “4” and place both blocks at the very

end of your script, outside both “if/else” blocks.

 The script for the stage

To complete the program we need to program the backgrounds. If you haven’t

imported them from RPiScratch\Resources\Backgrounds, now’s the time to do it.

A
The cat has

chosen A. So A is stored
in the variable
“country”.

The destination the dog chooses will be stored in the variable “country”. This is important,
because this variable will be used by the script for the stage to determine the script’s output.

Select the stage in the Sprites List and build the script you can see in the

screenshot above.

Here, we have created three “nested if” conditional statements, which will switch

the background according to the dog’s choice. We use the term “nested” when

one conditional statement is put inside another one.

Each time we use this program, the stage has to be reset to the “brick-wall1”

background. The conditional statements need to keep checking until the dog has

made her choice, so I have put them in a “forever loop”.

 Tip...

Users do not

always do

what they are

supposed to do.

If a user provides

an unexpected

input, this can

cause an “error”

in the program,

which will often

cause the

program to

“crash”. Programs

that have errors in

them are said to

contain “bugs”.

An important task

for a programmer

is testing their

program to make

sure it is bug-free.

A
country country

A beginner’s guide to Scratch

34

 The full script

Phew, that was complicated. But hopefully you managed it all in the end. Just

to make things a bit easier, here are the full scripts for both the cat sprite and

the stage.

The code for the cat

The code for the stage	

To see a sample of the code for this lesson, open

RPiScratch/Projects/holiday_dog.

Notes:

A beginner’s guide to Scratch

35

 Over to you

Question: Study the code shown above for the cat sprite and the stage.

Do you understand it?

Task: Experiment with the code. See if you can add some extra questions.

 A final word

In fact, the cat is not intelligent at all. Computers have no intelligence – it is the

programs that run on them that make them appear intelligent. This is why we use

the term “artificial intelligence”. The only intelligent things here are the programmer,

who programmed the cat, and you, for completing Lesson 1.5.

 Lesson 1.6: Control

Learning objective: In this exercise, you will learn how to write control

programs that respond in different ways depending on inputs to the program.

Resources: The sprite “robot_up” and the background “green_background”.

 The robot

You’re probably used to robots from the movies: metal men clanking and talking

in metallic voices. This is actually an old-fashioned idea of a robot. It dates from a

play written in 1920. I bet even your teacher was young then.

A more modern way of thinking about a robot is as anything that can be controlled

by a computer. This is known as “control engineering”. This device could be an

aeroplane, a washing machine, a lathe, a welding machine, a level-crossing

barrier, a sewing machine, a self-drive car or anything else you can imagine.

But let’s start with a proper, old-fashioned robot. We don’t have a real robot, or all

the wires and circuits we’d need to control one. So, instead, we’ll use a robot that

lives inside the Scratch stage. What you learn by doing this is how to make your

robot respond to inputs.

We are going to program our robot so that we can control it using the “up arrow”

key. To make it easier to see our robot moving, we need to be able to see him from

above.

Import the sprite “robot_up” from RPiScratch/Resources/Costumes.

While we’re at it, import the background “green_background” from

RPiScratch/Resources/Backgrounds.

This is how we think of
robots, but most robots
don’t look like this.

Notes:

A beginner’s guide to Scratch

36

Have a look at the screenshot above. We have used the “when [space] key

pressed” event from Control to run the program. The robot sprite is moved to the

centre of the screen using a “go to x: [0] y: [0]” block from Motion (see “Positioning

your sprite”, in Lesson 1.3).

The rest of the code is placed inside a “repeat until” loop (from Control). Inside the

repeat loop, we have an “if” (a conditional statement) that checks if the “up arrow”

key has been pressed. This has been set to a “key [up arrow] pressed” event

(from Sensing).

The “touching []?” block from Sensing is set to “edge”. That means that if the

robot touches the edge of the Scratch screen, the event will stop the script.

An “event” is something that happens in a program.

In this script, there are two possible situations:

1. �The “up arrow” key has been pressed – in which case, the robot will walk up the

screen for 20 steps, switching costumes as it does so.

2. �The “up arrow” key has not been pressed – in which case, the robot will

do nothing.

That’s not going to be very useful. Let’s see if we can do better.

To see an example of this script, open RPiScratch/Projects/robot_v1.

This script will
make our robot

move on our
command, but

only in one
direction.

Notes:

A beginner’s guide to Scratch

37

Notes: Robot project

Resources: The sprite “robot_control” and the background “robot_maze”.

We have included the code of a more complete version of the robot program,

“Robot_2” (see the screenshot above). In this version, the robot can be moved up,

down, left and right.

Task: Now it’s your turn to do some programming. Program the robot and then

use your program to make the robot follow the yellow path on the “robot_maze”

background.

Task: Load the code and then change it to make the robot walk more quickly.

For an example of this script in action, open RPiScratch/Projects/robot_v2.

 Tip...

This is useful

code for

controlling

characters

in games.

A beginner’s guide to Scratch

38

 Line-following vehicle (LFV)

Resources: The sprite “yellow_car” and the background “line_background”.

That robot is like something out of a corny science-fiction film. Let’s look at a

more modern example. Scientists are experimenting with vehicles that can drive

themselves. One way of doing this is by programming the vehicle to follow a line

painted on the road surface. These vehicles are known as “line-following vehicles”,

or LFVs.

In this exercise, we’ll look in more detail at the blocks in the Sensing section.

Our task is to make a car to follow a line, just like the real engineers designing

LFVs for use on the roads. Our main tool is going to be the “color [] is touching []?”

block from the Sensing menu.

This block allows a program to detect when an area of one colour touches against

another colour: for instance, as in the screenshot above, a patch of red touches a

patch of black.

Notes:

The Sensing
script blocks
allow your
program to sense
changes in its
environment,
either in
response to user
input or events in
the program.

A beginner’s guide to Scratch

39

Once the program can detect two colours touching, then we can tell it how to

respond when this happens. The colour event becomes a trigger, causing the

program to do something.

To set the colours in your block, click on one of the little coloured squares. Your

mouse-pointer will turn into an “eye-dropper”. Use the eye-dropper to click on the

colours you want to use in your block.

But how can we use the ability to detect colour to help make our LFV follow a line

on the road? Well, let’s start by importing our “line_background” and the sprite

“yellow_car”.

Notes:

 Tip...

If you can’t stop

your car for long

enough to sample

a colour, hit the

red “stop scripts”

button at the

top-right of the

screen.

Look closely at the car, and you’ll see that there’s a patch of green on its bumper.

We’re going to use that green as our first “sensor”. Build the script that you can

see in the next screenshot.

Now, click on the green flag and see what happens. Oh dear, everything is fine as

long as the line curves to the left but as soon as it curves to the right the car

wanders off. What’s going on?

The problem is that the car needs two sensors. Currently, if the line bends to the

right, the black line will touch the green sensor – the program will detect this and

tell the car to turn to the right.

A beginner’s guide to Scratch

40

Now, we need to use the red patch on the car’s bumper as a red sensor. The

program will then be able to detect when the line turns left and tell the car to turn

to the left too.

Here’s the code you need to finish your LFV program:

As you can see, the program is run with a green flag event. After that:

n �A “go to” block is used to position the car on the line.

n �We the have used a “forever” loop to keep the car running.

n �The car moves 0.5 steps (for each cycle of the loop).

n �An “if” block is then used to check if the green spot on the car has touched the

black line. If it has, the car will turn to the right by 1 degree.

n �Another “if” block is then used to check if the red spot on the car has touched

the black line. If it has, the car will turn to the left by 1 degree.

For an example of a completed version of this project, open

RPiScratch/Projects/lfv.

 The level crossing

Resources: The sprites “lights” and “barrier”, the background “level_crossing”

and the sound “level_crossing_a”.

Computer control systems can save lives. At a level crossing we have to make

sure that cars and trains never meet. This is done with a sensor on the track that

detects the passing train.

A computer then responds to this event by stopping the traffic approaching the

level crossing and closing the barrier. This control program can be written in

Scratch. But before we start, we need to import the necessary sprites and

background.

First, import the background “level_crossing”. As you can see from the picture on

the next page, the background shows the road leading up to the crossing, the

traffic-light box and the barrier support.

 Tip...

Run the program

in full-screen

mode – it is more

impressive. Click

on the right-hand

button at the

top-right of the

Scratch window,

just above the

green flag and

the red circle.

 Tip...

If your car stops

at an odd angle,

and you can’t

straighten it out,

you can import

the “yellow_car”

sprite again, drag

and drop your

finished script

onto the new

sprite and then

delete the

old one.

A beginner’s guide to Scratch

41

Notes:

Now we need our sprites. Import “lights” and “barrier” from the

RPiScratch/Resources/Costumes folder.

Traffic-light box

Barrier support

Look at the image above, and you’ll see that the “lights” sprite has four different

costumes. By switching costumes quickly, we can make it look as if the lights

are flashing.

The last thing we need to do before we start building our script is to import the

sound of the level-crossing alarm. To do this, click the Sounds tab, find the sound

“level_crossing_a” and then use the import function, just as you did with

the background.

A beginner’s guide to Scratch

42

Now, let’s build our script. Before you start, select the “lights” sprite in the

Sprites List.

First things first: we want to start with the lights out. So we use a green flag event

to switch our lights sprite to “costume1”, which shows three black lights.

As the train approaches the level crossing barrier, I have used an “when [] key

pressed” block from Control to detect it, setting the value to “t”. This event will

trigger the lights, alarm and barrier. But first, let’s deal with the alarm.

Build the script you can see in the screenshot above. This will cause the alarm to

sound when the “t” key is pressed.

Notes:Import your sound effect
from the Sounds tab. You’ll

find it right next to the
Scripts and Costumes tabs.

A beginner’s guide to Scratch

43

To make the red lights appear to flash we must switch the two red light costumes

repeatedly. We use a “repeat” loop for this. Build the script on the previous page.

You’ll need to experiment with the number of repeats until you get the timing right.

Notes:

This is the finished program for the lights, with all the blocks in place. Notice that

you have three separate scripts, not touching each other.

 The barrier

Now for the barrier: drag it until it sits on the barrier support, with its thicker end

just resting on the top of the post. Each time the program starts, the barrier must

be pointing upwards. Using a “point in direction [90]” block (from Motion) will take

care of this.

A beginner’s guide to Scratch

44

In the script for the barrier, I have used a “when [] key pressed” block from

Control, with its value set to “t”. Think back – the script for the lights also starts

when you press the “t” key. In this way, lights and barrier are synchronised: that

means they both start at the same time.

To lower the barrier, we will rotate the pole in stages by using a “repeat” block.

Experiment with the number of repeats and the angle of turn to move the barrier

just the right amount.

After a set time, 13 seconds, we raise the barrier using another repeat block.

The train has passed, all the cars are safe. Well done!

For an example of this project in its finished state, open

RPiScratch/Projects/level_crossing.

 Over to you

Task: As an extra feature for this program, create a train sprite that moves

across the screen when the barrier drops.

 Lesson 1.7: Scratch games

Learning objective: In this exercise, you will learn some of the techniques

used for game programming by playing some Scratch games.

Some of the most fun that you can have with Scratch is through programming

games. You can make games about anything you like. We have included two

sample games for you to investigate, and there are plenty more games and other

examples of programs in the Scratch Projects folder.

The starting point for each new game is the theme or idea, and the aim of the

game. When you have an idea for a game, think about the “story” you want to tell

and the game’s characters, players, pieces etc. that you will need. These will be

the sprites.

You can find great images for sprites and backgrounds by importing them from

the Scratch Media folders or by searching on Google Images, saving and importing

into Scratch. If you want to get some idea of how to get started and what you

can do, have a look at some other people’s games. The best way to learn how

to program is to examine other people’s scripts to see how they made cool

things happen.

Finally, you will need backgrounds for your stage to create the rooms, levels and

scenes in your game, so that your characters have somewhere to move around in.

Notes:

 Tip...

Don’t forget to

add sounds and

music, as this

greatly enhances

a game.

A beginner’s guide to Scratch

45

Notes: Prancing Pony game

Resources: The sprites: “pony” and “girl” and the background “field”.

The aim of the game: A pony moves around a field, making random changes

of direction. Using the mouse, the player controls the girl sprite. To score points,

you must put the girl on the pony.

There are four tasks for you to program:

1. Move the pony round the field.

2. Make random changes in direction of the pony.

3. Move the girl with the mouse pointer.

4. Add a point to the score each time the girl is placed on the pony.

So, let’s get to it!

 Moving the pony

Select the pony sprite and drag a green-flag event to the Scripts tab. We will use

the green flag event to run all the scripts in this game at the same time.

We have used a “forever” loop to keep our pony moving (remember your LFV). For

each cycle of the loop, the pony moves forward 3 steps. If it hits the edge of the

screen it will bounce off in the other direction; this prevents it from getting stuck.

1. Keeping the pony moving

A beginner’s guide to Scratch

46

If the pony never changes direction except when it hits an edge, the game will get

a bit dull. So we’ll use another “forever” loop to make the pony randomly change

direction from time to time.

The “pick random [] to []” Operator block has been set to pick a random number

from 1 to 4. If the number picked is 1, the pony will turn 180 degrees.

This is set to happen every 0.5 seconds by the “wait” block.

2. Random changes

in direction

Select the girl sprite in the Sprites List. Using yet another “forever” loop, as well

as blocks from Motion and Sensing:

n �Set the x coordinate of the girl sprite to the x position of the mouse pointer.

n �Set the y coordinate of the girl sprite to the y position of the mouse pointer.

3. Move the girl with your mouse

pointer

4. Score a point

each time the

girl is placed

on the pony.

In this script, you can see the following:

n �We have created a variable to handle the score and named it “score”

(imaginatively!).

n �When the game starts the score is set to “0”.

n �The “forever if” loop checks to see if the red colour of the girl’s top is touching

a small blue dot on the saddle of the pony.

n �Every time the red touches the blue the score is changed to “score + 1”.

Notes:

A beginner’s guide to Scratch

47

1. Moving the

red car

Hang on a second! Every time the red touches the blue dot, “score” is changed

to “score + 1”. If you are good at maths that should set the alarm bells ringing!

How can something be itself plus one?

Don’t worry; programmers often do this. Remember that a variable is not a

number; it is a container that can store numbers. We can do a sum with the

number and put the result back into the same container.

To see a working example of the Prancing Pony game, open

RPiScratch/Projects/prancing_pony.

 Racing game

Resources: The sprite “red_car” and the background “track”.

The aim of the game: A two-player game. Each player controls a racing car

around a track. If the car goes off the track, it crashes. The first one over the line

is the winner.

There are five tasks to program for each car:

1. Line cars up on the starting line.

2. Set the cars in motion.

3. Crash the car if it leaves the track.

4. Declare the first car over the line as the winner.

5. Oh, yes – and the players have to be able to control the cars!

Notes:

 Tip...

Remember, to

stop everything

moving so that

you can sample

the colour of girl’s

top with the

eye-dropper tool,

hit the red “stop

scripts” button.

If you can’t find

the girl sprite,

have a look in the

bottom-left

corner. She may

have run off to

hide there when

you dragged your

mouse to the

Script tab.

Start off with a green-flag event. When the flag is clicked, the car to should:

n �switch to “costume1”

n �position itself at the coordinates x: 35 y: 130

n �point itself to the right (direction 90)

A beginner’s guide to Scratch

48

To do all this, you’ll need, along with the green flag, blocks from Looks and Motion.

To move the car, we use our old friend the “forever” loop. The car moves one step

each cycle.

If the car leaves the track, it will touch the green grass. This event will cause the

first “if” block to crash the car and stop the script for the car.

As the car crosses the finish line, it will touch the white line. This event will cause

the second “if” block to say “I win!” and stop all the script running for both cars.

Ok, so we can get the red car moving. But we need to be able to steer it. To do

this we need two “when [] key pressed” (from Control) events are used to control

the car.

As you’d expect, the “right arrow” key turns the car to the right and the “left arrow”

key turns the car to the left.

2. Controlling

the red car

3. Do the same

for the purple car

Similar code is used to control the purple car with some slight alterations. The

easiest way to do this is to make the red car and then duplicate the sprite.

Remember to change the costumes of your new car from red to purple.

Notes:

A beginner’s guide to Scratch

49

The changes you need to make to your code for the purple car are:

The purple car should line up next to the red car at x: 30 y: 115.

You should also use the “x” key to turn the car to the right and the “z” key to turn

the car to the left.

To see a finished example of this game, open

RPiScratch/Projects/racing_game_v1.

 Over to you

Task: Add the sound of racing cars to enhance the game. You’ll need to record

or create your own sound file.

Task: Try to make these improvements to the racing game:

In the racing game you just created, the car says “I win!” when it hits the line. But

the speech bubble is gone so fast, it’s hard to read. However, if we change the

script so that the speech bubble stays on screen for, say, 2 seconds, then there’s

a chance that the second car will also hit the finish line in that time and also say

“I win!”. Then we wouldn’t know who had really won.

Try and create a new version of the game, saving it as something like

“racing_game_v2”, this time causing the losing car to stop in its tracks the moment

the winner crosses the finish line. To do this, you’ll need to use a variable.

Call this new variable something like “have_winner”. The default value of

“have_winner” should be “0”. Whenever either car wins, by touching the white

finish line, it should set the value of “have_winner” to “1”. This should be the

trigger for both cars to stop moving.

Finally, instead of having the cars crash when they hit the grass, try and make

them slow down, so that the player has a chance to get them back onto the track.

To see a finished example of this game, open

RPiScratch/Projects/racing_game_v2.

Notes:

 Tip...

When you are

creating a game,

don’t be over-

ambitious at the

beginning.

Program your

basic idea and

make sure that it

works. Then

develop your

game bit by bit,

adding new

characters,

events and levels.

It is a good idea

to save each new

version with a

different number,

so that you can

keep track of the

changes that

you have made.

You may get stuck

and want to

go back to a

previous version

of your game.

A beginner’s guide to Scratch

50

 What next?

Congratulations! You are now a Scratch programmer. Hopefully, this is just the

beginning for you, and you will be inspired to create your own programs using

the Scratch language. There are many other skills and programming techniques

to learn.

Happily, one of the great things about Scratch is the wealth of support and

advice on the internet. I have included a few links to some online tutorials for you

to explore:

http://learnscratch.org

http://www.scratch.ie

http://scratch.redware.com/index.php

http://blogs.wsd1.org/etr/?p=395

http://scratched.media.mit.edu

http://morpheus.cc/ict/scratch/default.htm

And why not tell your teachers about Scratch? Maybe you and other like-minded

kids from your school could even set up a Scratch Club. And when you have

projects to do, you could ask your teachers if you can do them using Scratch.

The most important thing is to have fun with Scratch.

Stuck and don’t
know how to get

unstuck? Don’t
suffer in silence.
There are some

great, friendly
forums on the

Scratch website
where there are

lots of other
Scratch users

to help you.

A beginner’s guide to Scratch

51

 Build your own blocks

When you become an advanced user of Scratch, you may find that there

isn’t a script block for a particular job you want to do. Or you might want to

improve your program by creating better blocks. Help is at hand with BYOB at

http://byob.berkeley.edu

Thank you for reading this guide. I hope it helps you to have hours of fun with your

Raspberry Pi.

Now it’s time to move on to the next chapter, in which you will learn how to

program in the Python language as well. Exciting stuff!

Notes:

