
IN DEPTH Python IN DEPTHPython

www.pcpro.co.uk 059PC PRO•OCTOBER 2012www.pcpro.co.ukPC PRO•OCTOBER 2012058

Want to code your own action game for the Raspberry Pi?  
Kevin Partner shows how to create a simple shoot-em-up in Python

 Create a Python game  
for the Raspberry Pi 

I
f you’re the proud owner of a Raspberry 
Pi, the visual Scratch language is a 
great way to take your first steps in 
programming (see p60). But to unlock 

more of the power and potential of the 
hardware, take a look at Python.

Python is the default educational 
programming language for the Raspberry Pi. 
It’s used around the world as an introductory 
language for many platforms, thanks to its 
uncluttered style and easy-to-understand 
syntax. It isn’t only for beginners, though: 
according to the TIOBE Programming 
Community index, Python is the eighth 
most popular programming language 
among professional engineers, ahead of Perl, 
JavaScript and Visual Basic .NET. It’s also free, 
so it’s easy to see why so many people choose 
Python as their first scripting language.

In this feature we’ll introduce the key 
concepts of Python, and show you how to 
get started with the language by walking you 
through a sample game written in Python. 
Then it’s over to you to create your own 
masterpiece, which you can submit to our 
Raspberry Pi coding competition (see p42).

Getting to know Python
There are two major versions of Python in 
use. Python 3 is the future, but Python 2 
enjoys wider compatibility with existing 
resources, and it’s this version that’s currently 
bundled with Raspberry Pi. For this tutorial, 
we’ll use Python 2.7, the final stable release 
in the 2.x series: this means we can use the 
majority of online examples and pre-written 
code unchanged. When the time comes, moving 
up to version 3 will be straightforward.

The first thing you may notice about 
Python is how neat it looks. Those used to 
PHP, JavaScript or other modern languages 
will also spot the absence of curly braces, as 
conventionally used to enclose sections of 
code. This is because Python uses indentation 
to organise code. This is good practice in 
most languages, because it makes code more 
readable: in Python it’s mandatory. If you don’t 
get your spacing right, your code won’t work. 

While this can be a shift for experienced 
programmers, it becomes natural quickly and 
leads to clear, intelligible code by default.

Python also makes a good first language 
because it represents a simple implementation 
of object-oriented programming – a concept 
any aspiring coder must understand – and is 
relaxed about how variables are created and 
managed. The net result is a particularly 
productive programming environment. 

Python code is usually run through an 
interpreter rather than being compiled, but 
despite this, end results are pretty fast. Python 
applications can run on all major operating 
systems, so it’s possible to create a Python game 
on a Windows PC and have it run on a Mac 
or Linux box – or, indeed, a Raspberry Pi.

A final great strength of Python is the 
availability of a wide range of add-on modules 
that bring extra functionality. One such module 
is Pygame (www.pygame.org). As its name 
suggests, Pygame helps you create games using 
Python: for example, it greatly improves image 

handling through its Sprite class, makes it easy 
to control in-game audio, and even allows your 
game to work with joysticks. Games such as 
Call of Duty might be beyond its capabilities, 
but an Angry Birds clone certainly isn’t. 

Native and cross-platform 
development
If you’re running the recommended Debian 
Squeeze Linux distribution on your Raspberry 
Pi, Python and Pygame come preinstalled, so 
you can start programming right away. You 
can write Python scripts in a text editor, but 
we suggest you take advantage of the free 
Geany integrated development environment 
(IDE) that’s also installed as part of the 
operating system. This software offers 
numerous helpful features for programmers, 
such as automatic syntax colouring, to make 
your code simpler to read and debug, and a 
symbol browser to help keep track of all the 
classes and variables in your code. 

As we’ve mentioned, however, Python works 
across many platforms, so you can write your 
code on a Windows PC and then move it across 
to the Raspberry Pi when you’re finished. To do 
this, you’ll need to install Python 2.7 on your 
PC: you can get the installer from www.python.
org/download. Even if you’re running 64-bit 
Windows, choose the regular Windows 
installer, not the x86-64 one, since the standard 
Pygame installation is 32-bit only. 

Once you’ve installed Python (accepting 
the installation defaults), Pygame for Windows 
can be downloaded from www.pcpro.co.uk/
links/216id1 – again, accept default settings. 
If you already have a preferred IDE, it will 
almost certainly support Python “out of the 
box”; if not, get Geany for Windows free from 
www.pcpro.co.uk/links/216id2. To configure 
it for testing and running Python scripts, launch 
Geany, then go to the Build menu and click Set 
Build Commands. Find the Execute field and 
replace the current contents with C:\Python27\
python %f (assuming you installed Python to 
the default directory). 

 
Designing a game
Our first Python project will be a simple 
shooting game called Raspberry Pie (ahem). In 
this game, three different types of fruit will fall 
from the top of the game area, but only the 
raspberries should reach the bottom and go 
into the pie. The player controls a movable 
turret, and wins points by shooting cherries 

and strawberries: points are deducted if a 
raspberry is destroyed accidentally, or if one 
of the other fruits ends up in the pie. 

Let’s start by collecting together the assets. 
The Open Clip Art Library (http://openclipart.
org) is a great place to find free clip-art; we can 
get our fruit images from here. We’ll create our 
own images for the turret and the bullets. We 
could collect together sounds for our game, too, 
but for now we’ll keep things simple and silent.

Now let’s think about 
how we’re going to 
structure our program. 
The basic structure of an 
arcade game is the same 
whether you’re planning to 
use Scratch, Python or any 
other tool. We begin by 

setting up the execution loop environment, and 
create the objects that will be used in the game. 
We then initialise everything – for example, 
setting the score to zero. Then there’s a main 
loop that handles the gameplay. Once the game 
ends, the score is displayed.

Objects
Object-oriented programming (OOP) underpins 
most modern programming languages, and 
it isn’t too difficult to understand. Think 
about the visible objects in our game: the only 
aspects that vary from one tumbling fruit to 
another are their position and genus (that is, 
whether they’re raspberries, strawberries or 
cherries). We can therefore represent them all 
very simply by creating a single fruit class 
with properties that indicate genus and 
position. We can then create fruits as 
independent instances of the class (these 
instances are the “objects” of OOP), each 
of which contains information about what 
sort of fruit it is and its location.

As well as properties, classes can have 
methods – built-in actions that we can invoke 
whenever we want. In the case of fruit, the 
major thing each object does is fall. So we 
might build a method into our class that 
says “take my current vertical position 
and move it down by 3 pixels”.

Since all the code relating to the fruit sits 
within the fruit class, bugs are easy to find 
and, once fixed, apply to all instances across 
the entire program. You can even base one 
class on another, giving you a hierarchy of 
subclasses. For now, however, let’s stick to a 
simple implementation. Remember that, while 
classes are written as part of the code, objects 
are created only when the program runs, and 
don’t exist beyond the duration of the game.

Creating the code
On the following pages we’ll walk you 
through the code for Raspberry Pie, so 
you can see how the program works and 
type along if you wish. If anything seems 
unclear, your first stop should be the Python 
documentation (http://docs.python.org) 
for more information. We’ll also be drawing 
heavily on the methods and properties 
provided by Pygame – see www.pygame.org/
docs for more information.

You can also download a copy of the 
code from www.pcpro.co.uk/links/216id3, 
so you can play the game yourself right away. 
In addition, you can use this code as a starting 
point to learn more by modifying and updating 
it yourself. Can you add a high-score table? 
Or make different types of fruit move in 
different ways? Once you’ve mastered the 
basics of writing games in Python, you can 
create your own original game, and send it 
in for our competition (see p42).

 HANDS ON

 Geany is a free, lightweight IDE that’s ideally suited to Python development 

 Our game runs exactly the same way on 
the Raspberry Pi as it does in Windows

 Although the website looks undeniably amateur, Pygame is a hugely powerful Python library 
that’s been used to produce thousands of games

“A great strength of Python 
is the add-on modules that 
bring extra functionality”



www.pcpro.co.ukPC PRO•OCTOBER 2012060 www.pcpro.co.uk 061PC PRO•OCTOBER 2012

IN DEPTH Python IN DEPTHPython

Creating Raspberry Pie in Python

W
A

L
K

T
H

R
O

U
G

H 1Start by opening Geany and saving a blank document as 
“raspberry.py”. The extension tells Geany we’re using Python, so 

it will highlight our syntax accordingly. As another visual aid, go to 
Geany’s Edit menu, select Preferences | Editor | Display and tick 
”Show white space“ – this helps spot indentation errors. Now we’re 
ready for our first line of code. The import statement links external 
libraries into our program, so we can use the classes, properties and 
methods they contain. Before going any further, let’s test that these 
libraries can be found. Click the Execute button and a command 
window should pop up. If there’s a problem, this will contain an 
error message; otherwise, we’re good to go.

2Now we create our first class – a simple one called Game that 
keeps track of the score. We define this class using the class 

statement, and give it a name. The colon after the name marks the 
start of the block of code that describes the properties of instances of 
Game. No punctuation is needed to mark the end of this block: that’s 
shown by indentation. Define a single method called ”__init__“. This 
is a special method (called a constructor) that’s automatically run 
whenever an object of this class is created. In this case, it creates 
and initialises variables for the score and the raspberry count. As 
you can see, the same colon and indentation syntax is used, and 
when we’re defining a class we use the placeholder ”self“ to stand 
in for whatever the name of the instance might be. 

3 Now let’s define a class for the player’s turret. We’ll base this 
on Pygame’s Sprite class, which is full of useful properties and 

methods. To specify this, we put the name of that class (the ”parent 
class“) in brackets after the class name. Now we create a constructor 
method for the turret. First, we call the parent class constructor to 
initialise everything. Then we use the Pygame image.load method to 
import a graphic for our turret and store it in the property ”image“. 
The get_rect() method lets us access the position and dimensions of 
this image, so in the next line we can use the rect property to set the 
pixel position of the turret. The co-ordinates we’ve chosen place it 
halfway along the bottom of the area we’re going to use for the 
game. Using a semicolon lets us put two commands on one line.

4 The turret needs to be able to move, so we’ll add a second 
method called moveMe, to be called when the player presses a 

cursor key. This will take two arguments: a reference to the turret 
to be moved and a direction to move in. If the direction argument is 
”left“ – and the left edge of the turret isn’t already within five pixels 
of the edge of the game area – we subtract five pixels from its 
horizontal co-ordinates using the ”-=“ subtraction operator. (Note 
also the ”==“ operator that’s used for checking if two values are 
equal.) If the direction is ”right“, we test whether the turret’s right 
edge is too close to the right-hand side: we calculate this using the 
rect.width property, so our code will work regardless of what size 
the turret graphic is. Assuming there’s space to move, we then add 
five pixels to the turret’s horizontal co-ordinate.

5 Next we create a class for bullets, in much the same way as 
the turret. However, whereas the turret is always created in the 

middle of the playing area, each new bullet instance must appear 
directly above the centre of the turret. To find the correct ”x“  
co-ordinate, we perform a few calculations involving the rect.width 
properties of both the turret and bullet objects. To place the bullet 
directly above the turret, we set its ”y“ co-ordinate to be the same 
as the ”y“ co-ordinate of the turret, minus the turret’s height (vertical 
co-ordinates count from the top of the screen to the bottom). The 
bullet needs a movement method too: updatePosition moves it five 
pixels up the screen, or deletes it if it has reached the top. 

6 All three types of fruit in the game behave in the same way, so 
we can derive them all from a single class. The type of fruit each 

instance represents is determined by a random integer between 
one and three, and stored in a property called genus. We use this 
property to assemble a filename and load in the right image. To add 
visual variety, we rotate the image randomly, to an angle between 
-5° and 15°. All fruits start out above the top of the screen, ready to 
drop into the playing area, so we set the initial vertical position 
to zero, minus the height of the image. Finally, we set its horizontal 
starting position. We don’t want fruit to protrude off the edge of the 
play area, so we use a random number between 20 and 440.

## Import libraries 
import math,random,pygame,sys

## Set up class for main game variables
class Game():
	 def __init__(self):
		  self.score=0
		  self.raspberryCount=0

## Set up class for the player’s turret
class Turret(pygame.sprite.Sprite):
	 def __init__(self):
		  pygame.sprite.Sprite.__init__(self)
		  self.image=pygame.image.load("turret.
png")
		  self.rect = self.image.get_rect()
		  self.rect.x = 240; self.rect.y = 630

## Set up method to enable the player’s turret to move        
	 def moveMe(self,direction):
		  if direction=="left" and self.rect.x>5:
		  self.rect.x-=5
		  if direction=="right" and self.rect.
x<(480-self.rect.width):
		  self.rect.x+=5

## Set up class for bullets
class Bullet(pygame.sprite.Sprite):
	 def __init__(self,turret):
		  pygame.sprite.Sprite.__init__(self)
		  self.image=pygame.image.load("bullet.
png")
		  self.rect=self.image.get_rect()
		  self.rect.x=turret.rect.x+(turret.rect.
width/2)-(self.rect.width/2)
		  self.rect.y=turret.rect.y-turret.rect.
height

## Set up method to move bullets up the screen
	 def updatePosition(self):
		  if self.rect.y>0-self.rect.height:
			   self.rect.y-=5
		  else:
			   self.kill()

## Set up class for fruit
class Fruit(pygame.sprite.Sprite):
	 def __init__(self):
		  pygame.sprite.Sprite.__init__(self)
		  self.genus=random.randint(1,3) 
		  if self.genus==1: imagefile="raspberry"
		  if self.genus==2: imagefile="strawberry"
		  if self.genus==3: imagefile="cherry"
		  self.image=pygame.imageload(imagefile+".
png")
		  self.image=pygame.transform.rotate(self.
image,-15+random.randint(0,20))
		  self.rect=self.image.get_rect()
		  self.rect.y=-0-self.rect.height
		  self.rect.x=(random.randint(2,44)*10)

## Set up method to enable fruit to fall down the screen
	 def updatePosition(self,game):
		  if self.rect.y<640:
			   self.rect.y+=3
		  else:
			   if self.genus==1:
				    game.score+=10
				    game.raspberryCount+=1
				    else:
				    game.score-=50
			   self.kill()
## Set up method to update score and remove fruit when 
shot
	 def shot(self,game):
		  if self.genus==1:
			   game.score-=50
		  else:
			   game.score+=10
		  self.kill()

## Initialise the game
pygame.init()
pygame.key.set_repeat(1, 20)
scoreFont=pygame.font.Font(None,17)
statusFont=pygame.font.Font(None,17)
black=(0,0,0)
screen=pygame.display.set_mode([480, 640])
pygame.display.set_caption('Raspberry Pie')

## Create initial object instances
game=Game()
turret=Turret()
sprites=pygame.sprite.Group()
sprites.add(turret)
fruits=pygame.sprite.Group()
bullets=pygame.sprite.Group()

## Initialise game over flag and timer
end_game=False
clock=pygame.time.Clock()
tock=0

## Main loop starts here
while end_game!=True:
	 clock.tick(30) 
	 tock+=1
	 screen.fill(black)

## Process events
	 for event in pygame.event.get():
		  if event.type==pygame.QUIT:
			   sys.exit
		  if event.type==pygame.KEYDOWN:
			   if event.key==pygame.K_LEFT:
				    turret.moveMe("left")
			   if event.key==pygame.K_RIGHT:
				    turret.moveMe("right")
			   if event.key==pygame.K_SPACE:
				    bullet=Bullet(turret)
				    bullets.add(bullet)

7 Just as bullets travel upwards, fruit moves down the screen at 
regular intervals – so we give this class its own updatePosition 

method. If the fruit’s vertical position is less than 640 – that is, if it’s 
still within the play area – it drops by three pixels. Otherwise, the 
score is updated. If the object’s genus property is 1, meaning this fruit 
is a raspberry, the player gets ten points, and the raspberry counter 
is incremented. Otherwise, the player loses 50 points. Either way, the 
fruit object is now deleted. We also create a method called Shot, to 
be called if the fruit is hit by a bullet. If the fruit is a raspberry, we 
deduct 50 points from the player’s score; otherwise, add 10 points. 
Again, in either case, the object is then destroyed.

8 With all our classes now created, it’s time to initialise the game. 
First we initialise Pygame itself, to ensure everything is in its 

default state. Then we use the pygame.key.set_repeat() method to 
specify that if the user holds down a key, an event will register every 
20 milliseconds. The next two lines set up font objects that will display 
the score and how many raspberries have landed – for more on this, 
see the Pygame website. We store the value of black in a variable of 
that name (the three zeros represent red, green, and blue values) – 
this is just for convenience later on. Next we set up the game’s 
window: Raspberry Pie runs in a portrait-shaped space measuring 
480 x 640 pixels, which we’ll refer to as ”screen“. Finally, we set the 
caption of this window to show the name of the game.

9 We’re now ready to start creating objects based on the classes we 
defined in steps 2-7. First we create a Game object called game, 

and a Turret object called turret (note the capitalisation convention). 
For convenience, we then create a group called ”sprites“, and add the 
turret to this group. We also create groups for the fruits and bullets 
(although we can’t add members to these groups yet, as we haven’t 
yet created the objects). Combining sprites into groups is a convenient 
way to organise game elements. If you were creating a platform 
game, for example, using groups would make it easy to draw all the 
background tiles at once, then draw the player and enemies on top. 
Sprite groups also make it easy to use Pygame’s collision detection 
routines: a single line of code can check whether any element of one 
group has collided with any element of another.

10 Before entering the main loop, we initialise a variable called 
end_game: so long as this remains False, the main loop will 

continue cycling. When ten raspberries have hit the ground, we’ll 
set this variable to True and the game will end. Next we initialise 
an object called clock, based on the Pygame Clock object, to manage 
how often we poll for events and update the screen – if the game tore 
along at the maximum speed the Raspberry Pi can handle, it would 
be unplayable. Finally, we initialise a variable called ”tock“. This will 
keep track of how long it is since a fruit last appeared onscreen, so 
we can introduce a new one every two seconds. 

11Now it’s time to start the main game loop. We implement this 
using a while block – a block of code that executes only while 

the variable end_game isn’t set to True (the != operator means ”not 
equal to“). At the end of the block, this condition will be tested again, 
and if it’s still true then the block will execute again – and so on, 
round and round, until the value of end_game changes. Inside this 
loop, we start with a Pygame clock.tick() statement: this introduces 
a small pause, regulating the speed of execution so that the loop 
runs no more than 30 times a second (as specified by the number in 
brackets). Next we increment the value of tock by one, to mark that 
a bit more time has passed. Finally, we clear the playing area, using 
the value of black that we defined earlier.

12 Now we check for keypress events, so that the game can 
respond to the user. Pygame creates and stores an event each 

time a key is pressed (or multiple events if a key is held down), and 
we can access them using its event.get() method. Python’s for...in 
syntax allows us to cycle through and deal with each event in turn. 
For each event received, we first check whether the user has closed 
the game window – in which case we terminate the game. Then we 
check whether the user has pressed the left or right cursor key: if so, 
we call the turret’s moveMe method with the appropriate parameter. 
If the user has pressed space, we create a new bullet – passing it a 
reference to the turret so it knows where to appear – and add this 
bullet to our sprite group. 

1 7

8

9

10

11

12

2

3

4

5

6

To find out about our Raspberry Pi competition
Read our feature on p38



www.pcpro.co.ukPC PRO•OCTOBER 2012062

IN DEPTH Python
W

A
L

K
T

H
R

O
U

G
H 13 Now we move all bullets up the screen, and all fruits down. As 

each object contains a method that moves it appropriately, we 
simply need to call this method for each bullet and fruit in the game. 
Again, we can do this using the for…in syntax to move each member 
of the bullets group and each member of the fruits group in turn. 
We don’t need to send any arguments to the bullet’s updatePosition 
method, but for the fruits we must call updatePosition(Game). This 
is because the updatePosition method in the fruit class includes code 
that automatically updates the user’s score if the fruit reaches the 
bottom of the play area – so it needs a reference to the object that 
contains that property.

14 The variable ”tock“ increments each time the main loop is 
executed. Since the loop runs 30 times per second, we know 

two seconds have passed when tock exceeds 60. At this point, we 
add a new fruit – so long as there are fewer than ten fruits already 
onscreen. We check this using the len function (the name is short, 
slightly incongruously, for ”length“) to count how many members the 
fruits group has. If it’s fewer than ten, we create a new fruit object 
and add it to our fruits group. As the game runs, ”fruit“ will always 
refer to whichever fruit object was created most recently: we could 
give each fruit instance its own unique reference, but there’s no need. 
Finally, we reset tock to zero, restarting our two-second count.

15 Now let’s check whether any of the fruits has been hit by a 
bullet. Pygame makes this very easy: simply pass references 

to the two sprite groups to Pygame’s groupcollide() method and it 
will work out the collisions. It can also automatically delete either or 
both of the colliding objects. In our case, we don’t want fruits to be 
deleted (first we want to check the fruit type and update the score 
accordingly) – but the bullet can be removed right away. We convey 
this by passing ”False, True“ as arguments, referring to the first and 
second arguments respectively. The groupcollide() method returns a 
list, which we’ll call ”collisions“: if it has any members, we use yet 
another for…in loop to run the ”shot“ method on each fruit that’s hit.

16The game mechanics are now complete, but we still need 
code to show the current score and how many raspberries 

have been collected. Earlier on, we set up two Pygame font objects; 
now we can create text by accessing the render method of this 
class. This takes four arguments: the first is the text to be rendered, 
followed by a string (text) representation of the user’s score. Then 
we specify whether or not we want the text to be smoothed, and 
give RGB values for foreground and background colours. Pygame’s  
screen.blit() method draws the rendered text onto the screen at 
specified co-ordinates. We repeat this with the raspberry count, 
the difference being that this number counts down from ten and 
appears at the top of the screen rather than the bottom.

17 Finally, we update the screen to reflect the new positions of 
our turret, bullets and fruit. Pygame’s draw method lets us 

render all members of a sprite group in one line of code, but the 
screen isn’t redrawn right away: the display.flip() method updates 
the whole screen in one go, so that everything moves smoothly and 
simultaneously. Finally, we check whether the game is over. As 
the indentation shows, this is the end of the main code block, so 
execution loops back to the while statement in section 11, and the 
following lines are executed only after the game ends. These lines 
load in a frame graphic, using Pygame’s convert_alpha method to 
provide transparency, and render the final score text on top. We use 
another ”while“ block to pause the game so that the player can read 
the text. When they close the game window, Python exits the game. 

## Move objects
	 for bullet in bullets:
		  bullet.updatePosition()
	 for fruit in fruits:
		  fruit.updatePosition(game)

## Add new fruit if 2 seconds has elapsed
	 if tock>60: 
		  if len(fruits)<10:
			   fruit=Fruit()
			   fruits.add(fruit)
		  tock=0

## Check for collisions
	 collisions=pygame.sprite.groupcollide(fruits,
bullets,False,True)
	 if collisions: 
		  for fruit in collisions:
			   fruit.shot(game)

## Update player score
	 scoreText=scoreFont.render('Score:'+str(game.
score),True,(255,255,255),(0,0,0))
	 screen.blit(scoreText,(0,620))
	 statusText=statusFont.render('Raspberries:'+str
(10-game.raspberryCount),True,(255,210,210),(0,0,0))
	 screen.blit(statusText,(0,10))

## Update the screen and check for game over
	 sprites.draw(screen); bullets.draw(screen); 
fruits.draw(screen)
	 pygame.display.flip()
	 if game.raspberryCount>=10: 
		  end_game=True
## Game over: display the player’s final score
scoreBadge=pygame.image.load("scoreframe.png")
scoreBadge.convert_alpha()
left=90;top=250
screen.blit(scoreBadge,(left,top))
scoreFont=pygame.font.Font(None,52)
statusText=scoreFont.render('Your Score:'+str(game.score)
,True,(0,0,0),(231,230,33))
screen.blit(statusText,(105,300))
pygame.display.flip() 
## Wait for the player to close the game window
while True: 
	 for event in pygame.event.get():
		  if event.type == pygame.QUIT:
			   sys.exit()

13

14

15

16

17

The very last step is testing. This is especially important if you’ve been 
using a different platform for development: by modern standards, the 
Raspberry Pi is a very slow computer, and it runs a different OS to 
your PC, so it’s vital to ensure that your game works properly and 
runs at a playable speed before publishing it. If you’re working in 
Windows, and plan to test your creation on native hardware only at 
the end of the process – for example, if you’re coding at home to run 
on a Raspberry Pi at school – the easiest approach is to transfer the 
folder containing your game using a USB memory stick and load it up 
in Geany on the Raspberry Pi. It may take a little while to initialise, 
but so long as your game doesn’t waste memory or try to carry out 
excessively demanding computations, it should be fine.


